
Advancing Automatic Code Generation
for Agent-Based Simulations
on Heterogeneous Hardware

Jiajian Xiao1,2�, Philipp Andelfinger1,3, Wentong Cai3, Paul Richmond4,
Alois Knoll2,3, and David Eckhoff1,2

1 TUM CREATE Singapore
{jiajian.xiao,philipp.andelfinger,david.eckhoff}@tum-create.edu.sg

2 Technische Universität München, Germany
knoll@in.tum.de

3 Nanyang Technological University, Singapore
aswtcai@ntu.edu.sg

4 University of Sheffield, UK
p.richmond@sheffield.ac.uk

Abstract. The performance of agent-based simulations has been shown
to benefit immensely from execution on hardware accelerator devices
such as graphics processing units (GPUs). Given the increasingly het-
erogeneous hardware platforms available to researchers, it is important
to enable modellers to target multiple devices using a single model spec-
ification, and to avoid the need for in-depth knowledge of the hardware.
Further, key modelling steps such as the definition of the simulation
space and the specification of rules to resolve conflicts among agents
should be supported in a simple and generic manner, while generating
efficient code. To achieve these goals, we extend the OpenABL mod-
elling language and code generation framework by three aspects: firstly,
a new OpenCL backend enables the co-execution of arbitrary agent-based
models on heterogeneous hardware. Secondly, the OpenABL language is
extended to support graph-based simulation spaces. Thirdly, we specify a
generic interface for specifying conflict resolution rules. In a performance
comparison to the existing OpenABL backends, we show that depending
on the simulation model, the opportunity for CPU-GPU co-execution
enables a speedup of up to 2.0 over purely GPU-based simulation.

Keywords: Agent-based simulation · Parallel and Distributed simula-
tion · Heterogeneous hardware · OpenABL · OpenCL

1 Introduction

Agent-based simulation (ABS) is widely used for system analysis and the an-
swering of what-if questions in domains such as transport, computer networks,
biology, and social sciences [17]. Each agent, e.g., a vehicle or a pedestrian, is an
autonomous entity that makes decisions based on its environment, other agents,

and a number of behavioural models. Due to increasingly complex models and
large numbers of agents, large-scale ABS often suffer from long execution times.

There exists an ample body of methods to speed up agent-based simulation to
meet increasing performance needs, commonly based on parallel and distributed
simulation techniques. In the last decade, the increasing prevalence of heteroge-
neous hardware composed of CPUs and accelerators such as GPUs or FPGAs
opens up new possibilities to accelerate ABSs [28]. For instance, computationally
intensive segments can be offloaded to run on an accelerator where they can be
executed faster or ran in parallel to other parts being executed on the CPU.

However, placing the burden of tailoring the simulation to the target hard-
ware platform on the simulationist degrades the maintainability of the simulation
code as well as the portability to other hardware platforms. To avoid these is-
sues, the modelling language OpenABL [6] has been proposed to enable code
generation from high-level model and scenario specifications using a C-like syn-
tax. A number of backends are provided to generate parallelised code targeting
CPUs, GPUs, clusters, or cloud environments.

Previous to the work presented in this paper, each backend supported by
OpenABL targeted one specific type of hardware platform, i.e., co-execution on
combinations of CPUs, GPUs, FPGAs was not possible. This leaves a large range
of computational resources untapped, even though previous work has demon-
strated high hardware utilisation using co-execution [2]. Further, the simulation
environment was limited to continuous 2D or 3D spaces, which excludes graph-
based simulation spaces as commonly used in domains such as road traffic and
social sciences. Lastly, OpenABL did not provide a mechanism for conflict resolu-
tion, requiring modellers to manually provide code to detect and resolve conflicts
in situations where multiple agents request the same resources.

We address these limitations and contribute to the state of the art as follows:

– We extend OpenABL by an OpenCL backend to support automatic code
generation for heterogeneous hardware.

– We provide new syntactic elements to support graph-based simulation spaces.
– We define an interface that enables conflict resolution code to be generated

from user-specified rules.

Our extensions are open-source and available online1. The remainder of the paper
is organised as follows: In Section 2, we introduce OpenABL as well as OpenCL
and give an overview of related work in the field. In Section 3, we describe our
extensions to OpenABL. We evaluate the performance of the extended OpenABL
in Section 4. Section 5 summarises our work and concludes the paper.

2 Related Work and Background

The acceleration of ABS through parallelisation has received wide attention from
the research community. A number of frameworks simplify the process of devel-
oping ABSs, e.g. MASON [15], Repast [19], Swarm [18], or FLAME [11]. Sim-
ulator variants that exploit CPU-based parallelisation or distributed execution

1 https://github.com/xjjex1990/OpenABL Extension

Code written

in OpenABL
Abstract
Syntax

Tree

c

FLAME

FLAMEGPU

MASON

D-MASON

CPU

GPU

Cluster

Cloud

Frontend

Backend

agent Point {..

step move {..

XX.abl

Hardware

Fig. 1: An overview of the OpenABL.

1 agent Agent {
2 po s i t i o n f l o a t 2 coord inate ; }
3

4 param in t num of agents = 1000 ;
5 param in t s im s t eps = 100 ;
6 param f l o a t e nv s i z e = 100 ;
7

8 environment { max : f l o a t 2 (
e nv s i z e) }

9

10 s tep move(Agent in −> out) { . . }
11

12 void main () {
13 . . . /∗ i n i t i a l i s e the agents ∗/
14 s imulate (s im s t eps) {move} }
15

LISTING 1: Example OpenABL code.

include D-MASON [5] and Repast-HPC [4]. Making full use of those frameworks
requires modellers to be knowledgeable in parallel or distributed computing.

A comprehensive review of existing techniques to overcome the challenges
of ABS on hardware accelerators is found in [28]. One important method is to
abstract from hardware specifics to simplify porting to hardware accelerators.
FLAME GPU [23] is an extension to FLAME that provides a template-driven
framework for agent-based modelling targeting GPUs based on a state machine
model called X-machine. The Many-Core Multi-Agent System (MCMAS) [12]
provides a Java-based tool-kit that supports a set of pre-defined data struc-
tures and functions called plugins to abstract from native OpenCL code. Agent
models can be implemented using these data structures or plugins. In contrast
to our work, MCMAS and FLAME GPU target GPUs only. Several previous
works focus on the generation of performance-portable code targeting hetero-
geneous hardware by pattern-matching parallelisable C snippets [9], relying on
code templates [13], or using domain-specific languages [24]. Some works per-
form pattern-matching procedures on intermediate representations instead of
high-level code [26, 25]. Unlike OpenABL, which can exploit the parallelisable
structure shared by most ABS, the above works focus on automatically detecting
parallelisable computations such as nested loops with predictable control flows.

In parallel ABS, conflicting actions may occur, e.g., when two agents move to
the same position at the same point in time. Approaches proposed to detect and
resolve such conflicts typically rely either on the use of atomic operations during
the parallel agents updates [16] or on enumerating the agents involved in conflicts
once an update cycle has completed [22]. In both cases, the winner of each conflict
is determined according to a tie-breaking policy, which may be stochastic or rely
on model-specific tie-breaking rules. A taxonomy and performance evaluation of
the conflict resolution methods from the literature is given by Yang et al. [29]. In
the present work, we provide a generic interface to define a conflict search radius
and a tie-breaking policy from which low-level code is generated automatically.

Fig. 2: Co-execution on devices A and B. Each work-item of device A processes
the step functions assigned to A. After that, the data is transferred to Device B
(via host) for processing the step functions assigned to B.

2.1 OpenABL

OpenABL is a domain-specific language to describe the behaviour of agent-
based simulation and a framework to generate code targeting multiple execution
platforms. It acts as an intermediate layer to generate parallel or distributed
time-stepped ABS, given sequential simulation code written in the C-like Open-
ABL language. An overview of the OpenABL framework is depicted in Figure 1.
The framework consists of a frontend and a backend. Listing 1 shows an exam-
ple of frontend OpenABL code, where users can define agents with a mandatory
position attribute (keyword agent, L.1-2), constants (keyword param, L.4-6),
simulation environments (keyword environment, L.8), step functions (keyword
step, L.10), and a main function (keyword main(), L.12-14).

The OpenABL compiler parses OpenABL code and compiles it to an Inter-
mediate Representation (IR) called Abstract Syntax Tree (AST). The AST IR is
then further relayed to one of the available backends. The backend reconstructs
simulation code from the AST IR and parallelises the step functions targeted for
CPUs, GPUs, clusters or cloud environments. OpenABL supports the following
backends: C, FLAME [11], FLAME GPU [23], MASON [15], and D-MASON [5].

2.2 OpenCL

The Open Computing Language (OpenCL) is a framework that allows users to
write parallel programs in a C-like syntax without considering low-level hard-
ware specifics. An OpenCL execution environment is comprised of a host (usu-
ally CPUs) and one or multiple devices (e.g., CPUs, GPUs). A host program
initialises the environment, control, memory, and computational resources for
the devices. A device program consists mainly of so-called kernels that imple-
ment the computational tasks. Threads that process the tasks are referred to
as work-items. Parallelism is achieved by processing many work-items in paral-
lel. OpenCL is supported by a wide range of hardware including CPUs, GPUs,
APUs, and FPGAs, allowing it to target heterogeneous hardware environments.

3 Extending OpenABL

In this section, we propose extensions to the OpenABL language and framework
to support a wider range of simulation models as well as additional types of

Index 0 1 2 3 4
AgentID 3 2 5 8 6
Position (1, 4.5)(1, 35.3) (2, 9.5) (2, 98.3)

LaneID 1 2
mem_start 0 2
mem_end 1 4

(LaneID, PositionOnLane) (2, 1.3)

...

...

(a) Agents are sorted by their position (e.g. EdgeID
and PositionOnEdge). Each element in the environ-
ment array keeps a mem start and a mem end pointer
to its agents in global memory.

(b) In a grid with cell width at
least the search radius, the neigh-
bour search of the red agent loads
itself and adjacent cells.

Fig. 3: Coalesced memory access in the generated OpenCL code.

hardware. We first provide an OpenCL backend to support code generation
targeting heterogeneous hardware environments, enabling the execution on a
variety of devices as well as a multi-device co-execution, e.g., combining a CPU
and an FPGA. Further, we extend the OpenABL language to allow for the
definition of graph-based simulation spaces. Finally, we introduce a mechanism
for automated resolution of inter-agent conflicts based on user-defined rules.

3.1 Code Generation for Heterogeneous Hardware

OpenABL enables the addition of new backends without modifying the frontend,
which allows us to target heterogeneous hardware by adding an OpenCL back-
end. The existing backends only allow for the execution on a single platform,
e.g., a GPU. In contrast, OpenCL enables co-execution across multiple devices
of different types. Our aim is to allow modellers to fully utilise the available
hardware without specifying simulation code for each device manually.

The OpenCL backend takes as input the AST IR generated by the OpenABL
frontend. The output of the OpenCL backend consists of a host program and
a device program for each available device. Agents, the environment, constant
declarations and all auxiliary functions are duplicated in both the host and
device programs, as they may be referenced on either side.

The generated host program initialises the devices, allocates the required
memory, and initialises the agent state variables as well as the environment. In
a co-execution setting, the host program also orchestrates the data exchange be-
tween devices. After each simulation iteration, data processed by different devices
is transferred back to the host. In the simulate statement, each step function is
annotated with the identifier of the OpenCL device on which the step function
should execute, e.g.: simulate(sim steps) {stepFunc1(0), stepFunc2(1)}.

One compute kernel function is created in the device program for each de-
vice, where the designated step functions are called in sequence. On each device,
the work-items execute in parallel with each one processing one step function.

The main loop of the simulation calls the compute kernel of each device iter-
atively until the step count defined in the parameter of simulation() has been
reached. As shown in Figure 2, the execution of subsequent compute kernels

across devices is serialised to guarantee that data dependencies across kernels are
respected. In the future, additional merging steps based on the model-specific
dependencies could allow kernels to execute in parallel across devices.

3.2 User-Specified Environments

The original OpenABL limits the simulation environment to continuous 2D
or 3D spaces, parametrised by the max, min, and granularity attributes in
the environment declaration. Furthermore, user-defined types can only be used
within agents, and not in function bodies or the environment, complicating the
model specification. We extend the OpenABL syntax and frontend to lift these
limitations. User-defined types for arbitrary variables in function bodies as well
as in the definition of the simulation environment can be specified as follows:
Lane {

int laneId;

float length;

int nextLaneIds[MAX LANE CONNECTIVITY]; }
environment { env : Lane lanes[env size] }

The keyword env inside the environment declaration defines the simulation
environment. It accepts an environment array of all native types supported by the
original OpenABL as well as user-defined types. In this example, the environment
is defined as an array of the user-defined type Lane. The Lane type encapsulates
a lane’s identifier, its length, and its connections to other lanes.

Accelerators typically employ a memory hierarchy composed of global mem-
ory accessible to all work-items and one or more types of memory accessible
to groups or individual work-items. Due to the high latency of global memory
accesses, data locality is an important consideration in ABS development [6]:
accesses of adjacent work-items to adjacent memory addresses can frequently
be coalesced, i.e., translated to a single memory transaction, allowing for peak
memory performance on OpenCL devices such as GPUs. In common ABS mod-
els, agents tend to interact only with agents within a certain radius or on the
same edge in a graph environment. To achieve data locality during execution,
we implemented the efficient neighbour search method by [14]. Spatial locality
is exploited by partitioning the simulation space into a grid of cells. Each cell’s
side length equals the largest search radius that appears in the model. In the
original OpenABL, data locality is achieved in 2D or 3D space by specifying a
radius using the following neighbour search query:
for (AgentType neighbours : near (currentAgent, radius))

We extend the language to allow for a similar neighbour search query for
graph-based models: for (AgentType neighbours : on (env))

In the example of a traffic simulation with graph edges representing road
lanes, the following query retrieves all agents on a lane:
for (Vehicles neighbours : on (lanes[currentVehicle.currentLane]))

Coalesced memory access is achieved by always keeping the array of agents in
the global memory sorted according to the individual dimensions of the position
attributes. Each element in the environment array keeps track of its start and end

address in global memory. As illustrated in Figure 3a, two attributes mem start

and mem end record the start and end address of each single lane in the global
array of agents. The two attributes are updated after all step functions have ter-
minated. When the neighbour search query is called, instead of iterating through
global memory, only a chunk of memory is loaded. In a graph-based setting, the
chunk of memory is indicated by env.mem start and env.mem end. For 2D or
3D simulation spaces, we load chunks of memory holding the agents in current
partition and all the neighbouring partitions (cf. Figure 3b).

3.3 Conflict Resolution

In parallel ABS, simultaneous updates of multiple agents can result in multiple
agents being assigned the same resource at the same time, e.g., a position on a
road or consumables [7]. Unlike desired spatial collisions, e.g., in particle collision
models, conflicts introduced purely by the parallel execution must be resolved
to achieve results consistent with a sequential execution.

Conceptually, conflict resolution involves two steps: First, conflict detection
determines pairs of conflicting agents, and second, tie-breaking determines the
agent that acquires the resource. The loser of a conflict can be rolled back to its
previous state. Since roll-backs may introduce additional conflicts, the process
repeats until no further conflicts occur. A number of approaches for conflict
resolution on parallel hardware have been proposed in [29]. Here, we propose a
generic interface to specify a spatial range for conflict detection and a policy for
tie-breaking, from which low-level implementations are generated.

The conflict resolution is specified as follows:
conflict resolution(env, search radius, tie breaking)

All pairs of agents residing on the same element in the env array are checked
for conflicts based on the agents’ state variables. When considering 2D and 3D
environments, the environment array is comprised of the internally generated
partitions of the simulation space, with search radius specifying the search
radius. tie breaking is a binary predicate that, given two agents A and B as
arguments, returns true if A should be rolled back. If the agents are not in
conflict or agent B should be rolled back, tie breaking returns false.

As an example, in a traffic simulation scenario, the env is the environment
array roads[]. Assuming the desired position of an agent is indicated by the
state variables (LaneID, PositionOnLane), the tie breaking function can be
defined so that the agent with larger PositionOnLane wins the conflict. The
position and velocity of the other agent involved in the conflict are reverted to
their previous values. The generated conflict resolution code is executed once all
step functions have been executed. The conflict detection relies on the neighbour
search methods introduced in Section 3.2. As the step functions may change
the agents’ positions, the environment array is sorted and the mem start and
mem end pointers are updated after each iteration (cf. Section 3.2). Currently, the
conflict resolution code is based on a user-specified tie-breaking rule. Our future
work includes the automatic generation of model-agnostic resolution code [29].

10
-1

10
0

10
1

10
2

10
3

10
4

2
10

2
12

2
14

2
16

2
18

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Number of agents

C (OpenMP)
FLAME GPU

MASON
OpenCL

(a) Circle (low agent density)

10
-1

10
0

10
1

10
2

2
10

2
12

2
14

2
16

2
18

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Number of agents

FLAME GPU
OpenCL

(b) Circle (high agent density)

10
-1

10
0

10
1

10
2

10
3

10
4

2
10

2
12

2
14

2
16

2
18

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Number of agents

C (OpenMP)
FLAME GPU

MASON
OpenCL

(c) Boids

10
-1

10
0

10
1

10
2

10
3

10
4

2
10

2
12

2
14

2
16

2
18

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Number of agents

C (OpenMP)
FLAME GPU

MASON
OpenCL

(d) Game-of-Life

Fig. 4: Performance of the C, FLAME GPU, MASON and OpenCL code.

4 Experiments

We evaluate the extended OpenABL on a system equipped with a 4-core Intel
Core i7-4770 CPU, 16 GB of RAM and an NVIDIA GTX 1060 graphics card
with 6 GB of RAM. We rely on GCC version 5.4, OpenCL version 1.2, and
NVIDIA CUDA 10.0.292. We compare the performance of the OpenCL backend
and the other backends: C with OpenMP, FLAME GPU, MASON. We consider
three existing models: Circle, a benchmark for accessing neighbours within a
certain radius provided in [3]; Conway’s Game of Life [8]; and Boids [21], which
simulates the flocking behaviour of birds. We based our implementation on the
code provided in the OpenABL repository2. During preliminary experiments,
we observed that FLAME GPU’s performance is severely affected by file system
I/O to store simulation statistics, which we disabled in our measurements. We
run the simulations in two scenarios: “low agent density” generates agents evenly
throughout the simulation space, whereas “high agent density” generates agents
only in the upper left quadrant. We run all simulations for 100 time steps to
allow for comparison with the existing results in [6].

As illustrated by Fig. 4a, 4c, 4d, the C variant is slow in all cases. This is
because it iterates through all agents to search neighbours while the other back-
ends rely on grid-based approaches to limit the search space. The performance of
the OpenCL backend is on par with the FLAME GPU backend and outperforms
the other backends for low agent densities. As shown in the first four rows of
Table 1, this is mainly owing to the massive parallelism on the GPU and the
efficient neighbour search implemented by both backends. Despite the relatively

2 https://github.com/OpenABL/OpenABL

Table 1: Breakdown of simulation runtime [s] for Circle (216 agents)
Backend Agent updates Neighb. search Other Total

C 308.5 (100.0%) 0.00 (0.0%) 308.5
OpenCL 0.32 (33.3%) 0.61 (63.5%) 0.03 (3.2%) 0.96
FLAME GPU 0.24 (28.9%) 0.17 (20.5%) 0.42 (50.6%) 0.83
MASON 45.00 (100.0%) 0.00 (0.0%) 0.08 (0.0%) 45.08
OpenCL, high density 2.64 (81.2%) 0.58 (17.8%) 0.03 (1.0%) 3.25
FLAME GPU, high density 2.52 (54.1%) 1.74 (37.3%) 0.40 (8.6%) 4.66

 0.01

 0.1

 1

 10

2
7

2
9

2
11

2
13

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Number of agents

GPU
 CPU+GPU

C (OpenMP)

(a) Traffic

10
0

10
1

10
2

2
10

2
12

2
14

2
16

2
18

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Number of agents

GPU
 CPU+GPU

C (OpenMP)

(b) Crowd

Fig. 5: Performance of the CPU-GPU co-execution.

long initialisation time as shown in Table 1 (the ’Other’ column), FLAME GPU
performs the best in low agent density scenarios. This is owing to FLAME GPU’s
message passing mechanism that generates one message per agent in the cur-
rent cell. However, the performance is sensitive to the agent density. In contrast,
the OpenCL backend sorts all agents in global memory after each simulation
iteration to ensure their correct assignment to cells. The performance of sorting
is barely affected by the density of agents. Thus, with high agent density, the
OpenCL backend outperforms FLAME GPU in all cases, as depicted in Fig. 4b
and the last two rows of Table 1. The other two models follow the same trend.

Our extensions to the OpenABL enable modellers to generate graph-based
ABSs. As a proof of concept, we developed a traffic simulation akin to a previous
manual implementation [27]. The agent behaviour is governed by two models: the
Intelligent Driver Model determines the agents’ longitudinal movement, whereas
Ahmed’s lane-changing model [1] determines the lateral movement. The gen-
eration of the conflict resolution code is enabled, the winner of each conflict
being the agent further ahead on the same lane. We evaluate two execution
schemes: executing purely on a GPU as well as CPU-GPU co-execution. In the
co-execution scheme, the car-following model is offloaded to the CPU, while the
lane-changing model and conflict resolution remain on the GPU. In all tested
cases, the time spent on conflict resolution occupies less than 0.1% of the over-
all runtime with on average 0.86 rollbacks per agent in 100 simulation steps. As
shown in Figure 5a, with a small number of agents, the C variant outperforms the
others due to the conflict resolution overhead and the data transfers between the
CPU and the GPU in the co-execution case. As the number of agents increases,

the GPU and co-execution variants produce better results than the C variant.
The absolute runtime of the pure GPU and co-execution variants is similar. The
co-execution achieves a maximum speedup of 1.78x over the C variant while the
purely GPU-based execution achieves a maximum speedup of 2.29x. To further
demonstrate the benefit of co-execution, we developed a crowd simulation based
on the building evacuation behaviour described in [20]. Agents are divided into
two groups based on their high-level behaviour: Leaders, which are assumed to
have a floor plan of the building, conduct path finding to search for the exits.
Followers flock to the nearest leader and follow the leader’s movement. If there
is no leader within a defined radius, the followers move in a random direction.
All agents follow the Social Force Model [10] as their low-level behaviour. In
the co-execution scheme, the memory-intensive path finding based on Dijkstra’s
algorithm is executed on the CPU, while the computationally intensive Social
Force Model is executed on the GPU. Similar to the traffic simulation, with a
small number of agents, the C backend variant outperforms the others, as illus-
trated in Fig. 5b. As the number of agents increases, the co-execution variant
outperforms the other variants. A maximum speedup of 3.5x over the C variant
and 2.03x over pure GPU is achieved through co-execution.

Finally, the OpenCL backend also opens up the possibility of executing on
OpenCL-enabled FPGA devices. For instance, Intel offers an SDK to compile
OpenCL code for FPGAs3. While in preliminary experiments, the considered
models exceeded the hardware resources of a Terasic DE10-Standard, we plan
to explore the area of FPGA-based acceleration in future work.

5 Conclusion and Future Work

In this paper, we presented our work towards automatic code-generation of
agent-based simulations for heterogeneous hardware environments. We extended
the OpenABL framework to overcome limitations in terms of the supported
hardware platforms and the representation of the simulation space to support
portable high-performance ABS for various model types. Our extensions are fully
open-source and available online. Furthermore, we presented a semi-automated
conflict resolution mechanism required to maintain the correctness of the paral-
lelised simulation. Our addition of an OpenCL backend to the OpenABL frame-
work not only enables the execution on CPUs and accelerators such as GPUs and
FPGAs, but also opens up new possibilities such as multi-device co-execution.

We evaluated the performance of the OpenCL backend using three existing
simulation models. It was observed that on a GPU, our approach outperformed
the existing C and MASON backends, mainly due to a more efficient neighbour
search method. In a high agent density scenario, our backend also delivers better
performance than the FLAME GPU backend. In addition, we demonstrated
our approach by developing two proof-of-concept traffic and crowd simulations,
showing the performance benefits of a CPU-GPU co-execution.

3 http://fpgasoftware.intel.com/opencl/

Our future work will focus on the automated assignment of computational
tasks to the available hardware devices.

Acknowledgement. This work was financially supported by the Singapore
National Research Foundation under its Campus for Research Excellence And
Technological Enterprise (CREATE) programme.

References

1. Ahmed, K.I.: Modeling Drivers’ Acceleration and Lane Changing Behavior. Ph.D.
thesis, Massachusetts Institute of Technology (1999)

2. Belviranli, M.E., Bhuyan, L.N., Gupta, R.: A Dynamic Self-Scheduling Scheme for
Heterogeneous Multiprocessor Architectures. ACM Trans. Archit. Code Optim.
9(4), 57 (2013)

3. Chisholm, R., Richmond, P., Maddock, S.: A Standardised Benchmark for As-
sessing the Performance of Fixed Radius Near Neighbours. In: Desprez F. et al.
(eds) Euro-Par 2016. LNCS, vol. 10104, pp. 311–321. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-58943-5 253

4. Collier, N., North, M.: Repast HPC: A Platform for Large-Scale Agent-Based Mod-
eling (2011)

5. Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo,
C.: A Framework for Distributing Agent-based Simulations. In: Alexander M. et al.
(eds) Euro-Par 2011. LNCS, vol. 7155, pp. 460–470. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-29737-3 51

6. Cosenza, B., Popov, N., Juurlink, B., Richmond, P., Chimeh, M.K., Spagnuolo,
C., Cordasco, G., Scarano, V.: OpenABL: A Domain-Specific Language for Parallel
and Distributed Agent-Based Simulations. In: Aldinucci M., Padovani L., Torquati
M. (eds) Euro-Par 2018. LNCS, vol. 11014, pp. 505–518. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96983-1 36

7. Epstein, J.M., Axtell, R.: Growing Artificial Societies: Social Science from the
Bottom Up. Brookings Institution Press (1996)

8. Gardner, M.: Mathematical Games: The Fantastic Combinations of John Conway’s
New Solitaire Game “Life”. Sci. Am. 223(4), 120–123 (1970)

9. Grewe, D., Wang, Z., O’Boyle, M.F.: Portable Mapping of Data Parallel Programs
to OpenCL for Heterogeneous Systems. In: Proceedings of the International Sym-
posium on Code Generation and Optimization. pp. 1–10. IEEE (2013)

10. Helbing, D., Molnar, P.: Social Force Model for Pedestrian Dynamics. Phys. Rev.
E 51(5), 4282 (1995)

11. Kiran, M., Richmond, P., Holcombe, M., Chin, L.S., Worth, D., Greenough, C.:
FLAME: Simulating Large Populations of Agents on Parallel Hardware Architec-
tures. In: Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems. pp. 1633–1636. IFAAMAS (2010)

12. Laville, G., Mazouzi, K., Lang, C., Marilleau, N., Herrmann, B., Philippe, L.:
MCMAS: A Toolkit to Benefit From Many-Core Architecure in Agent-Based Sim-
ulation. In: an Mey D. et al. (eds) Euro-Par 2013. LNCS, vol. 8374, pp. 544–554.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-54420-0 53

13. Li, P., Brunet, E., Trahay, F., Parrot, C., Thomas, G., Namyst, R.: Automatic
OpenCL Code Generation for Multi-device Heterogeneous Architectures. In: Pro-
ceedings of the International Conference on Parallel Processing. pp. 959–968. IEEE
(2015)

14. Li, X., Cai, W., Turner, S.J.: Efficient Neighbor Searching for Agent-Based Sim-
ulation on GPU. In: Proceedings of the International Symposium on Distributed
Simulation and Real Time Applications. pp. 87–96. IEEE (2014)

15. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A Multi-
agent Simulation Environment. Simulation 81(7), 517–527 (2005)

16. Lysenko, M., D’Souza, R.M., et al.: A Framework for Megascale Agent Based
Model Simulations on Graphics Processing Units. J. Artif. Soc. Soc. Simul. 11(4),
10 (2008)

17. Macal, C.M., North, M.J.: Tutorial on Agent-based Modelling and Simulation. In:
Proceedings of the Winter Simulation Conference. pp. 2–15. IEEE (2005)

18. Minar, N., Burkhart, R., Langton, C., Askenazi, M., et al.: The Swarm Simulation
System: A Toolkit for Building Multi-agent Simulations. Tech. rep. (1996)

19. North, M.J., Collier, N.T., Vos, J.R.: Experiences Creating Three Implementations
of the Repast Agent Modeling Toolkit. ACM Trans. Model. Comput. Simul. 16(1),
1–25 (2006)

20. Pelechano, N., Badler, N.I.: Modeling Crowd and Trained Leader Behavior during
Building Evacuation. IEEE Comput. Graphics Appl. 26(6), 80–86 (2006)

21. Reynolds, C.W.: Flocks, Herds, and Schools: A Distributed Behavioral Model. In:
Proceedings of the ACM SIGGRAPH. pp. 25–34. ACM (1987)

22. Richmond, P.: Resolving Conflicts between Multiple Competing Agents in Parallel
Simulations. In: Lopes L. et al. (eds) Euro-Par 2014. LNCS, vol. 8805, pp. 383–394.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14325-5 33

23. Richmond, P., Walker, D., Coakley, S., Romano, D.: High Performance Cellular
Level Agent-based Simulation with FLAME for the GPU. Briefings Bioinf. 11(3),
334–347 (2010)

24. Steuwer, M., Fensch, C., Lindley, S., Dubach, C.: Generating Performance Portable
Code using Rewrite Rules: From High-Level Functional Expressions to High-
Performance OpenCL Code. ACM SIGPLAN Notices 50(9), 205–217 (2015)

25. Steuwer, M., Remmelg, T., Dubach, C.: LIFT: A Functional Data-Parallel IR for
High-Performance GPU Code Generation. In: Proceedings of the International
Symposium on Code Generation and Optimization. pp. 74–85. IEEE (2017)

26. Sujeeth, A.K., Brown, K.J., Lee, H., Rompf, T., Chafi, H., Odersky, M., Olukotun,
K.: Delite: A Compiler Architecture for Performance-oriented Embedded Domain-
specific Languages. ACM Trans. Embedded Comput. Syst. 13(4s), 134 (2014)

27. Xiao, J., Andelfinger, P., Eckhoff, D., Cai, W., Knoll, A.: Exploring Execution
Schemes for Agent-Based Traffic Simulation on Heterogeneous Hardware. In: Pro-
ceedings of the International Symposium on Distributed Simulation and Real Time
Applications. pp. 1–10. IEEE (2018)

28. Xiao, J., Andelfinger, P., Eckhoff, D., Cai, W., Knoll, A.: A Survey on Agent-based
Simulation Using Hardware Accelerators. ACM Comput. Surv. 51(6), 131:1–131:35
(2019)

29. Yang, M., Andelfinger, P., Cai, W., Knoll, A.: Evaluation of Conflict Resolution
Methods for Agent-Based Simulations on the GPU. In: Proceedings of the Confer-
ence on Principles of Advanced Discrete Simulation. pp. 129–132. ACM (2018)

