Follow the Leader: Alternating CPU/GPU Computations in PDES

Romolo Marotta
r.marotta@ing.uniroma2.it
Tor Vergata University of Rome
Rome, Italy

ABSTRACT

Despite the successes of graphics processing units (GPUs) in accel-
erating simulations in several research fields, their use is largely
restricted to domain-specific workloads that consistently offer the
large degree of inherent parallelism and computational intensity at
which GPUs excel. When targeting generic discrete-event simula-
tions, whose dynamics can vary wildly over time, a static choice
between a GPU-based and traditional CPU-based execution is likely
to be suboptimal. Here, we explore a parallel discrete-event (PDES)
execution scheme for CPU-GPU platforms that aims to approximate
an optimal dynamic device choice. Starting from an intermediate
model state, a current “leader” device running the simulation is
periodically challenged by a brief concurrent run on another device
starting from an intermediate model state. Based on the gathered
performance measurements, a forecasting scheme determines the
leader for the next period. The execution time and power consump-
tion of this scheme hinge on 1) an efficient mechanism for providing
the “follower” device with a consistent model state, and 2) robust
performance forecasting to justify the device choices. We present
these building blocks, their implementation combining the existing
CPU and GPU simulators ROOT-Sim and GPUTW, and measure-
ment results demonstrating substantially reduced execution time
without increasing energy consumption over a static device choice.

CCS CONCEPTS

« Computing methodologies — Discrete-event simulation;
Massively parallel and high-performance simulations; « Com-
puter systems organization — Heterogeneous (hybrid) systems.

KEYWORDS

Parallel simulation, Speculative simulation, GPU, Time Warp

ACM Reference Format:

Romolo Marotta, Alessandro Pellegrini, and Philipp Andelfinger. 2024. Fol-
low the Leader: Alternating CPU/GPU Computations in PDES. In 38th ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM
PADS ’24), June 24-26, 2024, Atlanta, GA, USA. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3615979.3656056

1 INTRODUCTION

Largely driven by the highly regular workloads induced by machine
learning applications, GPUs enjoy continued popularity as accelera-
tors for data-parallel tasks. Beyond these applications dominated by
linear algebra operations, GPUs are commonly used for scientific

SIGSIM PADS °24, June 24-26, 2024, Atlanta, GA, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 38th ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation (SIGSIM PADS °24), June 24-26,
2024, Atlanta, GA, USA, https://doi.org/10.1145/3615979.3656056.

Alessandro Pellegrini
a.pellegrini@ing.uniroma2.it
Tor Vergata University of Rome
Rome, Italy

Philipp Andelfinger
philipp.andelfinger@uni-rostock.de
University of Rostock
Rostock, Germany

State Buffer [lr E

»
>

Wall time

Figure 1: Our approach: The current “leader” device (bold)
periodically saves a consistent model state in a buffer (ar-
rows) and is challenged by brief runs of the “follower” device
(dotted) starting from the saved state. The devices’ predicted
relative performance determines the new leader.

simulations, particularly when discretizing in regular steps over
time or space (e.g., [18]). While manufacturers offer convenient
thread-based programming models [22], programs must involve
large numbers of parallel operations on dense data structures to
make best use of the underlying vectorized operations supported by
the hardware, This makes discrete-event simulations (DES) a less
obvious fit for GPUs as events can be sparse both among simulation
objects and across time. Nevertheless, when using suitable data
structures and typically synchronous algorithms, GPU-based DES
has been shown to outperform CPUs substantially given large num-
bers of simulation objects and high event densities in simulation
time [15, 23]. Specialized GPU-based simulators have emerged tar-
geting specific model classes such as spiking neural networks 7, 17]
that typically exhibit these properties.

Generic DES engines, however, must support arbitrary user-
specified models, which may not benefit from GPU acceleration.
The device choice becomes further complicated by variability in the
model dynamics. Fluctuations in event density affect the relative
performance of CPU and GPU simulation, suggesting a dynamic
selection at runtime. For this purpose, we present the “follow-the-
leader” approach (cf. Figure 1), which approximates an optimal
dynamic device selection between a CPU and GPU for generic DES
based on measurement-driven time series forecasting and efficient
state migration. In addition to execution time reductions compared
to a static device choice, the approach has the potential to reduce
energy consumption by accelerating the “race-to-idle” [10].

2 RELATED WORK

Initial efforts towards tapping the massively parallel hardware of
modern GPUs for DES largely focused on offloading specific compu-
tationally intensive events, e.g., in wireless network simulations [3],
or specialized simulators targeting application domains such as
spiking neural networks [7, 17], electronics design automation [5],
or agent-based simulations [30]. With increasing general-purpose
programmability, generic DES engines entirely executed on a GPU
appeared in the literature [1, 2, 15, 23, 26].

https://orcid.org/0000-0001-7589-9274
https://orcid.org/0000-0002-0179-9868
https://orcid.org/0000-0002-0211-7136
https://doi.org/10.1145/3615979.3656056
https://doi.org/10.1145/3615979.3656056

SIGSIM PADS ’24, June 24-26, 2024, Atlanta, GA, USA

Due to the GPU architecture’s emphasis on exploiting data par-
allelism, the relative performance between GPUs and CPUs differs
vastly depending on various program characteristics [16], which
the time-varying and hard-to-predict dynamics of simulations make
particularly difficult to capture. Relying on all available devices [20]
or statically employing only one device becomes inefficient when
one of the devices is severely outperformed by the other. Our pro-
posed dynamic device selection to attack this issue bears similarities
to approaches for simulation algorithm selection [6, 14].

At a glance, a binary device selection can be seen as an extreme
case of simulator workload balancing on heterogeneous platforms,
which has been considered for certain classes of time-stepped simu-
lations [29, 31]. However, to the best of our knowledge, neither has
this problem been explored in the DES context, where assumptions
on the model cannot easily be made, nor have the performance and
energy implications of a binary device selection been assessed.

In the context of fault tolerance, the work in [4] proposes an
opportunistic n-version programming approach to enhance Byzan-
tine fault tolerance in software systems. The approach leverages
different service implementations to reduce the likelihood of com-
mon failure modes. This approach has been applied to PDES in [27],
where an Active Replication Management Layer (ARML) within the
High-Level Architecture (HLA) framework was proposed. ARML
enables transparent execution of multiple active replicas of sim-
ulation packages on SMP systems, improving simulation output
timeliness without programmer intervention. Our proposal goes
a step further by employing implementations targeting different
devices to reduce the time-to-completion.

The idea of having multiple simulations of the same model was
also explored in “simulation cloning” [12]. This technique dynami-
cally creates multiple simulation instances at decision points within
a simulation, enabling concurrent exploration of various execution
paths. By sharing common computation results, cloning supports
more in-depth explorations of what-if scenarios. Our proposal is
different in that we explore a single simulation trajectory, but ex-
ploit multiple hardware devices. We also share computation results
between the instances, but since we are exploring a single trajec-
tory, we carefully synchronize the state and event queues among
the replicas in order to ensure consistent execution.

3 THE APPROACH

The follow-the-leader approach dynamically migrates a simula-
tion’s execution between a CPU and a GPU. In the following, we
describe the performance forecasting and state migration approach
by which we approximate an optimal device selection.

3.1 Device Selection

Evidently, an ideal execution would consistently favor the device
that makes faster progress towards the simulation’s termination,
which we assume to occur at a predefined point in virtual time. To
formally capture the speed difference between devices based on the
relationship between the elapsed times tgyT and twcT in virtual
and wall-clock time, we first define the ratio

tevT (twet + Atwer) — tovt (bwet))

Tdevice (twCT) = Atwor

Romolo Marotta, Alessandro Pellegrini, and Philipp Andelfinger

This is the progress in virtual time over a span Atyct in wall time,
which will serve as a measure of the momentary simulation speed.

In practice, the interval [twcT, tweT + Atwer] must include at
least one GVT calculation in order to observe simulation progress.
Assuming that the CPU- and GPU-based simulator are both at the
same GVT, we now consider the speed difference rcpy—gpu (tweT) =
rcpu(twet) — rgpu(twet). An ideal execution would select the
CPU when the difference is positive, and the GPU when it is neg-
ative. However, the difference is not known a priori and must be
estimated, for which we rely on time series forecasting based on
measurements gathered on the fly. Since the measurements entail
non-negligible overhead, we discretize wall-clock time into a series
of equidistant epochs of length AtwcT,epoch- At the beginning of
each epoch, both devices execute in parallel for a short challenge
period AtwCT,challenge in order to collect a new data point. Based
on the time series defined by all previously collected data points,
we forecast rcpy—gpu using Holt’s method with damping [9, 11],
which combines simple exponential smoothing with a gradually de-
caying forecast of the current trend: Sy = aX;+(1-a)(Sr—1+¢Tr-1);
Ty = y(St = St—1) + (1 = Y)$Tr—1; Xe (m) = S + >, ¢™ Ty, where
St are the data points in the time series, T; is the trend, @ and y are
smoothing parameters in [0, 1], and @, which is set to 0.9 in our ex-
periments, governs the trend’s damping over time. This forecasting
model is equivalent to an ARIMA (1, 1, 2) process [9].

Once the challenge at the start of an epoch has completed, we
fit a model of the above form to the previously observed data
points of rcpy—gpu by adjusting « and y using Nelder and Mead’s
method [19]. The model is then exercised to obtain a forecast
fcpu-cpu of the speed difference up to the end of the epoch of
length AtwcT window- The sign of the forecast’s value decides which
device is active for the next epoch. Assuming normally distributed
forecasting errors, we use the prediction error’s variance over the
existing data points to additionally estimate the probability that
the chosen device will in fact be faster. Given the error’s variance
agrr, the estimated probability of rcpy—_gpy < 0 is determined
via the cumulative density function of the normal distribution as
fb(%). When P(rcpy—gpu < 0) is consistently close to % ie.,
the forecasts are too noisy to support a reliable device selection, the
challenge overhead can be avoided by falling back to a traditional
execution on a single device.

Naturally, our approach can only approximate the execution
time and energy consumption of an optimal device selection. The
sources of deviations from an optimal execution are as follows: 1)
Discretization error: When rcpy—gpu changes its sign throughout
an epoch, the device selection is suboptimal for parts of the epoch. 2)
Misprediction: With a certain probability, the forecast suggests the
slower device to be selected. 3) Challenge overhead: Prior to each
challenge, a consistent snapshot of the current leader simulator’s
state and events must be gathered, requiring a GVT calculation that
may otherwise be postponed. 4) An additional overhead in terms of
energy consumption is given by the period of length AtwcT,challenge
during which both devices are active.

Key tradeoffs exist in configuring AtwcT,epoch and AtwcT,challenge-
A longer epoch duration increases the discretization error as well
as the length of the forecasting horizon and thus the probability
for mispredictions, yet decreases the frequency of incurring the

Follow the Leader: Alternating CPU/GPU Computations in PDES

overhead for the challenges. A longer challenge duration may pro-
vide more accurate data points to be used in the forecasting but
increases the durations in wall-clock time during which both de-
vices are active. Note that the overhead incurred by an increased
challenge duration is in energy consumption only.

3.2 State Migration

An essential feature required by our approach is to resume the
simulation on the “follower” device whenever a new challenge
phase must be carried out. In fact, we cannot simply restart the
simulation on the follower because its state lags behind the leader
device’s in simulation time. Consequently, we need to realign the
state of the simulation across the different devices.

Since GPU/CPU DRAM transfers prefer aligned and large buffers,
we introduced the state buffer (see Figure 1), which is a contiguous
memory region in CPU DRAM where each simulator reads/writes
from/to a simulation snapshot. The latter includes states and pend-
ing events of each simulation object.

Since the different simulators might implement different kinds
of PDES engines (e.g., conservative vs. speculative), our proof-of-
concept implementation imposes that a simulation snapshot is guar-
anteed to belong to the correct simulation trajectory. On the one
hand, this allows the coexistence of conservative and speculative
engines. On the other hand, if a speculative DES engine is running
on the leader device, it needs to switch from forward execution to
snapshot collection. The latter selects a consistent state and pend-
ing events for each simulation object at the same committed virtual
time, which is achieved by aborting any speculative computation.

Once a committed snapshot has been constructed, the leader
serializes it into the state buffer, and the follower engine deserializes
the snapshot to resume the computation.

4 EXPERIMENTS

4.1 Setup

The reference CPU and GPU implementations that we have adopted
and integrated to evaluate our proposal are The ROme OpTimistic
Simulator (ROOT-Sim) [24] and GPUTW [15].

ROOT-Sim is an optimized implementation of a PDES runtime en-
vironment based on the Time Warp [13] synchronization protocol,
supporting self-optimized state saving for dynamically allocated
memory [25] and load balancing [28]. It is designed to implement
simulation models through event handlers based on standard ANSI-
C, providing a simple and reduced API for ease of use. ROOT-Sim is
built on a set of paradigms focused on performance and scalability,
offering facilities for parallelizing execution transparently.

GPUTW is a GPU implementation of the Time Warp [13] and
YAWNS [21] algorithms written in NVIDIA CUDA. The implemen-
tation follows a synchronous approach in which each GPU thread
is responsible for events pertaining to a dynamic number of model
entities and holds its own event, state, and antimessage lists. The
entity aggregation level is automatically tuned to obtain sufficiently
dense parallelism while limiting the cost of event-list operations.

As a benchmark, we have used a variation of the traditional
PHold model [8]. In PHold, simulation objects mimic real-world
models by means of busy loops, which eat processing cycles with

SIGSIM PADS ’24, June 24-26, 2024, Atlanta, GA, USA

no-operations for a specified amount of time. After each event’s ex-
ecution, a new event is scheduled to some other destination object.
In our experiments, we used two different execution phases. In a
balanced phase, each object targets any other object in the model
with a uniform probability. Conversely, in an unbalanced phase,
only a small subset of the simulation objects are targeted by newly-
injected events. This imbalance creates adversarial dynamics for
performance of Time Warp simulations, due to increased likelihood
of rollbacks and reduces parallelism. Since the CPU and GPU sim-
ulators fare differently with balanced and unbalanced workloads,
alternating between phases allows us to showcase the follow-leader-
leader approach’s ability to dynamically switch devices.

Our measurements were conducted on a machine equipped with
a AMD Ryzen 9 7950x processor, 64GB RAM, and an NVIDIA RTX
3090 Ti, running Debian GNU/Linux 11. Energy measurements are
based on the CPU’s and GPU’s self-reported energy estimates.

4.2 Results

Figure 2 shows the simulation progress in GVT up to the end time
of 6.4 x 107 over wall clock time. The background color indicates
the current workload balance generated by the model, and the line
types indicate the device the simulation is running on.

Considering a purely “balanced” model configuration (left-hand
side), we observe that the GPU vastly outperforms the CPU, fin-
ishing the simulation in about 43s wall clock time, compared to
195s on the CPU. The “unbalanced” case yields the opposite trend,
with 163s execution time on the GPU and 95s on the CPU. In both
cases, it is optimal to use just one of the devices without dynamic
switching, i.e., the follow-the-leader approach can only produce
overhead. In line with this expectation, a moderate overhead is
observed. Most of the overhead is generated by the rollbacks and
migration steps induced by the challenges (cf. Section 3.2). In the
balanced run, the effect of an erroneous forecast is visible, likely
caused by measurement noise. As a result, the CPU briefly becomes
the leader although the GPU would be faster.

Finally, in the plots on the right-hand side, the model alternates
between phases of balanced and unbalanced workload. Here, the
benefits of the follow-the-leader approach are evident: The execu-
tion successfully switches between the devices in accordance with
the model’s phases, reducing the execution time from 108s or 147s
on the individual devices to only 92s.

Figure 3 summarizes the energy in Joules required for the three
model configurations. The trend for the balanced and unbalanced
cases largely follows that of the performance curves, the least en-
ergy being consumed on the respective faster device. Note that we
include the energy consumption of the passive device: When the
GPU is active, one CPU thread orchestrates the GPU’s execution
via CUDA API calls while when the CPU is active, the GPU still
consumes a non-negligible amount of energy. For the alternating
model, the lowest energy consumption is achieved when running
on the CPU, while the GPU and follow the leader consumed similar
amounts of energy. In other words, our approach produced results
faster without adding significantly to the energy consumption.

SIGSIM PADS ’24, June 24-26, 2024, Atlanta, GA, USA

Romolo Marotta, Alessandro Pellegrini, and Philipp Andelfinger

%) %) %)
] 7 £ 7 & 7
= 6.3x10, T T = 6.3x10, T = 6.3x10,
B 54x107 - = = 54x107 |- : = 54x107 |- E
g 4.5x107 - 8 g 4.5x107 |- 5 g 4.5x107 |- 8
£ 3.6x10] - B £ 3.6x10] - B £ 3.6x10] - B
S 27x107 5 S 27x107 5 S 27x107 8
5 18x107 | B S 18x107 - B 5 18x107 - 4
£ 9x10° 5 £ 9x100 - : £ ox10° - .
° 0 1 1 1 1 1 1 1 1 ,_Q 0 1 1 1 1 L L L ,_Q 0 L Il L Il L Il
© 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140
Wall Clock Time Wall Clock Time Wall Clock Time
Unbalanced On CPU — Unbalanced On CPU — Unbalanced On CPU —
Balanced On GPU Balanced On GPU Balanced On GPU
(a) CPU only - Balanced (b) CPU only - Unbalanced (c) CPU only - Alternating Phases
L) L) L)
& 7 & 7 g 7
= 6.3x10 T T = 6.3x10, T T y = 6.3x10,
= 54x107 - e E = 54x107 - g = 54x107 - 9
2 45x107 - 8 g 45x107 8 g 45x107 1
E 3.6x107 - 1 £ 3.6)(107 r b £ 3.6)(107 - 1
2 2.7x10 B 2 2.7x107 - B 2 2.7x107 - B
Z 18x10] B S 18x107 - B S 18x107 q
£ ox10° B £ ox100 5 & X100 - q
2 0 1 1 1 1 1 1 1 1 2 0 1 1 1 1 1 1 1 2 0 Il Il Il L Il L
© 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140
Wall Clock Time Wall Clock Time Wall Clock Time
Unbalanced On CPU — Unbalanced On CPU — Unbalanced On CPU —
Balanced On GPU Balanced On GPU Balanced On GPU
(d) GPU only - Balanced (e) GPU only - Unbalanced (f) GPU only - Alternating Phases
o o o
£ 7 £ 7 £ 7
= 6.3x10 T T T T T T = 6.3x10, T T T T T T = 6.3x10, (] (1) T T T T
B 54x107 - 9 E 54x107 : B 54x107 - — 4
S 45x107 8 S 45x10 8 S 45x107 . 8
= 3.6x10; = = 2 3.6x10] |- = £ 3.6x10] |- —% =
g 27x107 - B 2 27x107 B 2 2.7x107 i B
2 Tsxiol [1% tsaolf i Z tsalf .
£ 9x10° 1= b 2 ox100 - b 2 ox100 - .
2 Il Il Il Il Il Il Il Il _O Il Il Il Il Il L L _Q 0 Il Il L L L L
© 0 20 40 60 80 100 120 140 160 180 O 0 20 40 60 80 100 120 140 160 O 0 20 40 60 80 100 120 140
Wall Clock Time Wall Clock Time Wall Clock Time
Unbalanced OnCPU — Unbalanced On CPU — Unbalanced On CPU ——
Balanced On GPU Balanced On GPU Balanced On GPU

(g) Follow the leader — Balanced

(h) Follow the leader — Unbalanced

(i) Follow the leader — Alternating Phases

Figure 2: Simulation progress in terms of GVT over wall time on the CPU, GPU, and our combined approach. The benchmark
model alternates between phases of balanced and unbalanced workload favoring either the CPU or the GPU.

30000 40000 30000
& 20000 - 1 = 30000 " 1 4 20000 - .
E‘ 10000 . E’ 200001 | 5’ 10000 .
‘:l 10000 |- [:‘ .
0 0 0
CPUOnly GPUOnly FTL CPU Only GPUOnly FTL CPUOnly GPUOnly FTL
Scenario Scenario Scenario
CPU U 3 CPU U 3 CPU U 3
(a) Balanced. (b) Unbalanced. (c) Alternating Phases.

Figure 3: Comparison of the energy consumption when running on a single device or when switching devices dynamically.

5 CONCLUSIONS

Our approach can reduce the time needed for simulations with
fluctuating computational demands by about 20% over CPU/GPU,
while maintaining GPU-level energy use. With worst-case time-
invariant workloads, execution times increased by about 10-25%.

If changes in model dynamics are rare, the periodic challenges
generate unnecessary overhead that more elaborate schemes could
reduce. For instance, challenges could be scheduled when a change
in the devices’ relative speed is predicted, or the forecast’s fidelity
is expected to drop below a threshold.

Technically, the key building block is an efficient facility to trans-
fer events between CPU and GPU. This will allow future work to

explore more deeply intertwined modes of co-execution between
otherwise self-contained and generic PDES realizations.

ACKNOWLEDGMENTS

This paper has been partially supported by the Italian MUR PRIN
2022 Project: Domain (Grant # 2022TSYYK]) financed by NextGenEu
and partially by the Spoke 1 “FutureHPC & BigData” of the Ital-
ian Research Center on High Performance Computing, Big Data
and Quantum Computing (ICSC) funded by MUR Missione 4 Com-
ponente 2 Investimento 1.4: Potenziamento strutture di ricerca e
creazione di “campioni nazionali” di R&S (M4C2-19) - Next Genera-
tion EU (NGEU).

Follow the Leader: Alternating CPU/GPU Computations in PDES

REFERENCES

(1]

(1]

[12

[13]

=
it

[15]

Philipp Andelfinger and Hannes Hartenstein. 2014. Exploiting the parallelism
of large-scale application-layer networks by adaptive GPU-based simulation. In
Proceedings of the Winter Simulation Conference 2014. IEEE, Piscataway, NJ, USA,
3471-3482.

Philipp Andelfinger, Jens Mittag, and Hannes Hartenstein. 2011. GPU-based
architectures and their benefit for accurate and efficient wireless network simu-
lations. In 2011 IEEE 19th Annual International Symposium on Modelling, Analysis,
and Simulation of Computer and Telecommunication Systems. IEEE, Piscataway,
NJ, USA, 421-424.

Scott Bai and David M Nicol. 2008. Gpu coprocessing for wireless network simu-
lation. In Symposium on Application Accelerators in High Performance Computing
(SAAHPC’08). IEEE Computer Society, Washington, DC, USA, 3 pages.

Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. 2003. BASE: Using
abstraction to improve fault tolerance. ACM transactions on computer systems 21,
3 (Aug. 2003), 236-269. https://doi.org/10.1145/859716.859718

John F Croix and Sunil P Khatri. 2009. Introduction to GPU programming for EDA.
In Proceedings of the 2009 International Conference on Computer-Aided Design
(ICCAD ’09). ACM, New York, NY, USA, 276-280.

Roland Ewald, Jan Himmelspach, and Adelinde M Uhrmacher. 2008. An algorithm
selection approach for simulation systems. In 2008 22nd Workshop on Principles
of Advanced and Distributed Simulation. IEEE, Piscataway, NJ, USA, 91-98.
Andreas K Fidjeland, Etienne B Roesch, Murray P Shanahan, and Wayne Luk. 2009.
NeMo: a platform for neural modelling of spiking neurons using GPUs. In 2009
20th IEEE international conference on application-specific systems, architectures
and processors. IEEE, Piscataway, NJ, USA, 137-144.

Richard M Fujimoto. 1990. Performance of Time Warp Under Synthetic Workloads.
In Distributed Simulation (PADS °90), David Nicol (Ed.). Society for Computer
Simulation International, San Diego, CA, USA, 23-28.

Everette S Gardner Jr and ED McKenzie. 1985. Forecasting trends in time series.
Management science 31, 10 (1985), 1237-1246.

Matthew Garrett. 2007. Powering Down: Smart power management is all about
doing more with the resources we have. Queue 5, 7 (2007), 16-21.

Charles C. Holt. 2004. Forecasting seasonals and trends by exponentially weighted
moving averages. International Journal of Forecasting 20, 1 (2004), 5-10. https:
//doi.org/10.1016/j.ijforecast.2003.09.015

Maria Hybinette and Richard M Fujimoto. 2001. Cloning parallel simulations.
ACM transactions on modeling and computer simulation: a publication of the
Association for Computing Machinery 11, 4 (Oct. 2001), 378-407. https://doi.org/
10.1145/508366.508370

David Jefferson, Brian Beckman, Frederick Wieland, Leo Blume, and Mike
DiLoreto. 1987. Time warp operating system. In Proceedings of the eleventh
ACM Symposium on Operating systems principles. ACM, New York, NY, USA,
77-93.

Till Koster, Nicola M Driieke, and Adelinde M Uhrmacher. 2018. Latency opti-
mized execution of sequential simulators by parallel parameter optimization. In
Proceedings of the 2018 Winter Simulation Conference. IEEE, Piscataway, NJ, USA,
4230-4231.

Xinhu Liu and Philipp Andelfinger. 2017. Time Warp on the GPU: Design and
assessment. In Proceedings of the 2017 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation (SIGSIM PADS ’17). ACM, New York, NY, USA,
109-120. https://doi.org/10.1145/3064911.3064912

SIGSIM PADS ’24, June 24-26, 2024, Atlanta, GA, USA

Unai Lopez-Novoa, Alexander Mendiburu, and Jose Miguel-Alonso. 2014. A
survey of performance modeling and simulation techniques for accelerator-based
computing. IEEE Transactions on Parallel and Distributed Systems 26, 1 (2014),
272-281.

[17] Jayram Moorkanikara Nageswaran, Nikil Dutt, Jeffrey L Krichmar, Alex Nicolau,

and Alex Veidenbaum. 2009. Efficient simulation of large-scale spiking neural
networks using CUDA graphics processors. In 2009 International Joint Conference
on Neural Networks. IEEE, Piscataway, NJ, USA, 2145-2152.

Cristobal A Navarro, Nancy Hitschfeld-Kahler, and Luis Mateu. 2014. A survey
on parallel computing and its applications in data-parallel problems using GPU
architectures. Communications in Computational Physics 15, 2 (2014), 285-329.
John A Nelder and Roger Mead. 1965. A simplex method for function minimiza-
tion. The computer journal 7, 4 (1965), 308-313.

Quang Anh Pham Nguyen, Philipp Andelfinger, Wen Jun Tan, Wentong Cai, and
Alois Knoll. 2021. Transitioning spiking neural network simulators to hetero-
geneous hardware. ACM Transactions on Modeling and Computer Simulation
(TOMACS) 31, 2 (2021), 1-26.

David M Nicol. 1993. The cost of conservative synchronization in parallel discrete
event simulations. Journal of the ACM (JACM) 40, 2 (1993), 304-333.

NVIDIA. 2024. CUDA, release: 10.3. https://developer.nvidia.com/cuda-toolkit
Hyungwook Park and Paul A Fishwick. 2010. A GPU-based application frame-
work supporting fast discrete-event simulation. Simulation 86, 10 (2010), 613-628.
Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2012. The ROme

OpTimistic Simulator: Core Internals and Pro%ramming Model. In Proceedinjgs 0
the 4th International ICST Conference on Simulation Tools and Techniques (SIMU-

TOOLS). ICST, Brussels, Belgium, 96-98. https://doi.org/10.4108/icst.simutools.
2011.245551

Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. 2015. Autonomic
State Management for Optimistic Simulation Platforms. IEEE Transactions on
Parallel and Distributed Systems 26 (2015), 1560-1569. https://doi.org/10.1109/
TPDS.2014.2323967

Kalyan S Perumalla. 2006. Discrete-event execution alternatives on general
purpose graphical processing units (GPGPUs). In 20th Workshop on Principles
of Advanced and Distributed Simulation (PADS 06). IEEE, Piscataway, NJ, USA,
74-81.

Francesco Quaglia. 2007. Software Diversity-Based Active Replication as an
Approach for Enhancing the Performance of Advanced Simulation Systems.
Int. J. Found. Comput. Sci. 18, 3 (2007), 495-515. https://doi.org/10.1142/
50129054107004802

Roberto Vitali, Alessandro Pellegrini, and Francesco Quaglia. 2012. A load-
sharing architecture for high performance optimistic simulations on multi-core
machines. In Proceedings of the 19th International Conference on High Performance
Computing (HiPC ’12). IEEE, Piscataway, NJ, USA, 1-10. https://doi.org/10.1109/
hipc.2012.6507510

Jiajian Xiao, Philipp Andelfinger, Wentong Cai, Paul Richmond, Alois Knoll,
and David Eckhoff. 2020. OpenABLext: An automatic code generation frame-
work for agent-based simulations on CPU-GPU-FPGA heterogeneous platforms.
Concurrency and Computation: Practice and Experience 32, 21 (2020), €5807.
Jiajian Xiao, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois Knoll.
2019. A survey on agent-based simulation using hardware accelerators. ACM
Computing Surveys (CSUR) 51, 6 (2019), 1-35.

Aiqi Zhu, Qi Chang, Ji Xu, and Wei Ge. 2023. A dynamic load balancing algorithm
for CFD-DEM simulation with CPU-GPU heterogeneous computing. Powder
Technology 428 (2023), 118782.

https://doi.org/10.1145/859716.859718
https://doi.org/10.1016/j.ijforecast.2003.09.015
https://doi.org/10.1016/j.ijforecast.2003.09.015
https://doi.org/10.1145/508366.508370
https://doi.org/10.1145/508366.508370
https://doi.org/10.1145/3064911.3064912
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.4108/icst.simutools.2011.245551
https://doi.org/10.4108/icst.simutools.2011.245551
https://doi.org/10.1109/TPDS.2014.2323967
https://doi.org/10.1109/TPDS.2014.2323967
https://doi.org/10.1142/S0129054107004802
https://doi.org/10.1142/S0129054107004802
https://doi.org/10.1109/hipc.2012.6507510
https://doi.org/10.1109/hipc.2012.6507510

	Abstract
	1 Introduction
	2 Related Work
	3 The Approach
	3.1 Device Selection
	3.2 State Migration

	4 Experiments
	4.1 Setup
	4.2 Results

	5 Conclusions
	Acknowledgments
	References

