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Abstract
Monte Carlo gradient estimators enable an efficient gradient-driven
local search in a simulation’s parameter space. Partial derivatives
are estimated based on the simulation outputs at random pertur-
bations around the current parameter combination. However, the
effective computational cost grows with the number of perturba-
tions. Here, we explore the use of modern CPUs’ vector instructions
to reduce the estimation time on a single processor core. We vec-
torize across simulation trajectories, based on the hypothesis that
the perturbations can be chosen small enough that the control flow
divergence remains low. Control flow is realized using a predication
scheme, allowing model code to remain similar to its scalar coun-
terpart. Since the approach trivially benefits numerical simulations
without parameter-dependent control flow, our evaluation instead
considers the calibration of a building evacuation model in which
transitive effects of perturbations change the neighborhood rela-
tion among pedestrians. Our cross-trajectory vectorization scheme
speeds up the model’s calibration via simulation-based inference
by a factor of about 1.5 without occupying additional cores.

CCS Concepts
• Computing methodologies → Agent / discrete models; •
Mathematics of computing→ Numerical differentiation.
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1 Introduction
The ability of gradient descent for swift local search over high-
dimensional input spaces is a key factor for the successes in deep
learning. Building on results from infinitesimal perturbation analy-
sis [21], the past years have seen a renewed interest in extending
the reach of gradient descent to various types of simulations to
accelerate calibration, simulation-based inference, the search for
optimal system designs, and reinforcement learning. At the core of
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Figure 1: Snapshots of pedestrian simulations under differ-
ent parameter perturbations. The neighbor sets (dotted cir-
cles) vary among simulation objects (𝑜𝑖 ), but remain largely
(here: exactly) the same across replications. We thus vector-
ize across replications to accelerate the ensemble.

these efforts is the handling of discrete jumps such as those caused
by conditional branching, which are not captured by gradients com-
puted in a straightforward manner via automatic differentiation
(AD) [14]. Broadly, the solutions fall into two categories: AD-based
approaches directly evaluate the derivative expressions correspond-
ing to the mathematical operations involved in the simulation, but
support only certain forms of control flow [3, 4] or require problem-
specific tuning [1, 11]. Finite difference-type estimators determine
gradients based on the changes in the simulation output when
varying the parameters either deterministically or stochastically.
While estimators such as REINFORCE [22] can be specialized to
produce unbiased estimates, artificial random perturbations allow
for approximate estimations for arbitrary simulations.

Both classes of estimators sample the simulation output, mak-
ing overall optimization processes time-consuming. Our work is
motivated by the observation that the replications within such an
ensemble are likely to follow similar control flow paths. A classi-
cal technique to exploit shared state trajectories by avoiding re-
computations is simulation cloning [10, 13]. However, in continuous
state spaces, stochastic parameter perturbations can cause states to
diverge quickly, even on identical control flow paths. Then, cloning
quickly degenerates to executing the replications independently.
Similarly, caching of previously encountered states [20] is unlikely
to succeed if most simulation objects’ exact states are unique.

The idea behind our approach is to vectorize across perturbed
replications. An idealized example is shown in Figure 1: pedestri-
ans (circles) move in a two-dimensional continuous space. Their
state updates depend on nearby pedestrians’ states, restricted by
an interaction radius (dotted circle). The neighborhood relation
determines the operands involved in each state update. At a given
time, this relation is different for each pedestrian, and hence their
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state updates will access different sets of state variables. On the
other hand, the neighborhood relation in the example is unaffected
by the slight perturbations, making it possible to efficiently vector-
ize each individual pedestrian’s state update across all replications.
Importantly, different from existing approaches for parallelizing
across state updates or replications [4, 5, 12, 18], our use of modern
CPUs’ vector instructions accelerates the ensemble runs without
using additional processor cores, although parallelization can still
be applied to further decrease execution times.

We make the following contributions:

(1) We present a simple abstraction that vectorizes mostly un-
modifiedmodel code across replications. A predication scheme
transparently handles divergent control flow paths.

(2) The execution time reductions and the maximum degree of
tolerable perturbations are assessed in an inference problem
over an evacuation simulation. Optimization curves show
the practical benefits of the approach.

2 Cross-Trajectory Vectorization
We aim to make use of vector instructions to accelerate ensembles
of similar simulation runs on a single processor core. Recent CPUs
offer vector instructions for a variety of mathematical, logical, and
memory operations, typically with vector widths of 256 bits as part
of the AVX2 instruction set extension, or 512 bits using AVX512.
Hence, these instructions apply to up to 16 floating point numbers
in single precision, or 8 numbers in double precision.

Key to our approach are vectorized data types that allow users
to operate on state variables across all replications at the same time.
To this end, we offer the type vfloat, which represents a floating
point variable with operations applying to multiple replications.
Trivially, vfloat2 extends the type to 2-dimensional spaces.

In the following, we discuss the main challenge of handling
divergent control flow across replications, particularly when the
divergence changes the set of variables involved in state updates.

2.1 Handling Divergent Branches
If a parameter-dependent control flow path is not taken by all repli-
cations, the subsequent operations must only be applied to a subset
of replications. To achieve this, we describe a vectorized imperative
branching construct vec_if as shown in Algorithm 1. Two key
aspects are the handling of nested branching, and the avoidance of
unnecessary overhead by skipping branches not taken by any repli-
cation. The global list conds holds per-replication truth values at
the current branch nesting level, initially set to all-ones. On variable
assignments, the tail element of conds decides which replications
the assignment applies to by masking all inactive replications. The
boolean any_true indicates whether there is any active replica-
tion. When we encounter a vec_if statement and the condition
is false for all replications, we set any_true to false and skip the
branch body. In this case, vec_fi resets any_true to account for
outer branch levels. If, instead, the branch condition is true for any
replication, we compute the logical AND between the previous and
current branch levels. If any condition remains true, we append all
truth values to conds and execute the branch body. Subsequently,
vec_fi removes the last element from conds. This vectorization

Algorithm1 Translation of vectorized if-construct via predication.
Branches not taken by any replication are skipped.

vec_if COND:
.
.
. [if body]

→

vec_fi →

if any(COND):
new_conds← conds[-1] ∧ COND
any_true← any(new_conds)
if any_true:

conds.append(new_conds)
else:

any_true← False
if any_true:

.

.

. [if body]

if any_true:
conds.pop()

any_true← True

Algorithm 2 Sample user code (left) and first loop iterations (right).
1: vfloat v1[#objects], v2[#objects] conds: [(1,1)]

.

.

. [initialization] v1: [𝑜1: (1,0), 𝑜2: ...]

v2: [𝑜1: (0,1), 𝑜2: ...]
2: for step in 1, #steps:
3: for o in 1, #objects:
4: vec_if v1[o] > 0: conds: [(1,1); (1,0)]

5: v2[o] += 1 v2: [𝑜1: (1,1), 𝑜2: ...]

6: vec_if v2[o] > 0: conds: [(1,1); (1,0); (1,0)]

7: v2[o] += 1 v2: [𝑜1: (2,1), 𝑜2: ...]

8: vec_fi conds: [(1,1); (1,0)]

9: vec_fi conds: [(1,1)]

scheme is reminiscent of the “single instruction, multiple data” exe-
cution abstraction offered by graphics processing units, in which
divergent “threads” are serialized in a similar manner [6].

In Algorithm 2, we show a snippet of sample user code and the
first loop iterations in an example execution with two replications.
Initially, all conditions in conds are true. On the outer vec_if (line
4), the condition is found to be true for the first replication, but
false for the second, which is recorded in conds. Accordingly, the
assignment v2[o_1] += 1 is applied only for the first replication.
The condition of the inner vec_if (line 6) is true for both replica-
tions. However, as the second replication’s value in conds is false,
it is again masked out in the branch body. Finally, the program exits
the two branch levels, removing the tail items from conds.

2.2 Effects of Divergent Neighborhoods
Our approach is particularly relevant to agent-based simulations,
as the dynamic neighborhood relations may prevent traditional vec-
torization across agents. Still, the more the neighborhoods diverge
among replications, the fewer vectorization opportunities remain.

To provide an intuition about the permissible amount of diver-
gence, we study the execution of an idealized neighbor-dependent
update step. The scalar ensemble carries out 𝑎𝑠 =

∑𝑅
𝑟=1 𝑛𝑟 neighbor

accesses, 𝑛𝑟 being the number of neighbors in replication 𝑟 . With
vectorization, the effective number of accesses 𝑎𝑣 is the number of
unique neighbors that occur in any replication, i.e., up to 𝑁 − 1 in
a simulation with 𝑁 agents. Let us first consider the best case of
identical neighborhoods in all replications. The effective number of
neighbor accesses across the original scalar ensemble is 𝑅 ·𝑛, where
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Figure 2: Screenshot of the evacuation simulation. The build-
ings’ occupants (•) enter the scenario from the left and escape
the building at a randomly chosen waypoint (×).

𝑅 is the number of replications and 𝑛 the (here constant) number of
neighbors per replication. By vectorization using a sufficient vector
width, this is reduced by a factor of 𝑅 to only 𝑛 accesses.

The worst case occurs when each possible neighbor appears
in exactly one replication, resulting in 𝑎𝑠 = 𝑎𝑣 . As we will see
in Section 3, when including all overheads, the best case speedup
factor is still substantially smaller than the vector width. Hence,
to attain a benefit, it is decisive that the perturbations are small
enough not to generate excessively diverse neighborhoods.

2.3 Implementation
We implemented vectorized arithmetic, logic, and control flow in
the form of a wrapper around Fastor, a tensor library for C++ [17].
Conditional branching via predication is implemented by the pre-
processor macros vec_if and vec_fi, which insert C++ code to
keep track of the branch conditions’ truth values across replications
on each nesting level. Using Fastor’s masking functionality, our
custom types’ overloaded operators are dynamically applied only
to the replications whose predicates are true. Our implementation’s
source code is publicly available1.

3 Experiments
We evaluate our vectorization scheme both for individual gradient
estimates and in an overall optimization task. The key issue at hand
is the trade-off between minimizing the execution time overhead,
which favors small perturbations, and maximizing the optimization
progress per step, which may favor large perturbations.

We employ Polyak’s gradient oracle [16], which obtained low-
variance estimates in similar tasks [2, 11]. For 𝑅 replications in-
cluding a reference run at parameters 𝜃 , the estimator is ∇𝑓 (𝜃 ) ≈
(𝑅 − 1)−1∑𝑅−1

𝑟=1
(
𝑓 (𝜃 + 𝑋𝑟 ) − 𝑓 (𝜃 )

)
𝑋𝑟
−1 with 𝑋𝑟 ∼ 𝑁 (0, 𝜎). We

note that the speedup by vectorization depends on the perturbation
size set via 𝜎 , not on the specific gradient estimator.

Execution times were averaged over 10 repetitions on an Intel
Xeon W-2133 CPU with AVX512 and clang 18.1.3. The optimization
task were averaged over 100 optimization processes per perturba-
tion size on an AMD EPYC 7742 CPU with AVX2 and clang 18.1.8.

1https://github.com/philipp-andelfinger/VecSimGradPADS25
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(b) Double precision.

Figure 3: Speedup by vectorization depending on the num-
ber of simulation replications and the standard deviation
of the input perturbations. The largest benefit of vectoriza-
tion is seen with small perturbations and when using single-
precision floating point numbers.

3.1 Simulation Model
We simulate the building evacuation scenario on the 30𝑚 × 30𝑚
space shown in Figure 2. The building’s occupants enter the sce-
nario from the left at a rate of one per second and escape through
randomly chosen exits. The simulation ends after 120s. Distance-
keeping among pedestrians and from walls is handled by Helbing’s
Social Force model [9] applied at 0.1s intervals using leap frog in-
tegration. The simulation was implemented in a traditional scalar
fashion and, with only minor changes, using our vectorized data
types and the vec_if construct. The main computational cost stems
from computing the forces from each pedestrians’ neighbors, which
we reduce in both implementation by neighbor lookups from a grid
based on an interaction range of 5m. The conditional branches han-
dled by our vec-if construct include checks whether a pedestrian
is active, whether the target exit has been reached, as well as several
branches to normalize angles among pedestrians and to obstacles.

We set up a simulation-based inference experiment similar to [8]
by drawing the pedestrians’ desired velocities from a two-component
Gaussian mixture specified using six simulation parameters, repre-
senting the components’ weights, means, and standard deviations.
The pedestrians’ evacuation times are evaluated with reference to
a pre-defined five-component Gaussian target mixture as a place-
holder representing empirical data. To calibrate the parameters via
maximum likelihood estimation, the simulation output is chosen
as the negative log-likelihood representing the goodness-of-fit.
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Figure 4: Average number of added neighbor accesses to ac-
count for divergent neighborhoods. More severe perturba-
tions and larger numbers of replications causemore accesses.

3.2 Performance Measurements
The main influencing factors for the speedup by vectorization are
the number of replications, the floating point precision, and the
sparsity in the operations, which depends on the perturbation size.
In Figure 3, we observe that as expected, the speedup is higher
in single precision and with small perturbations, reaching values
of 2.1 and 1.5 without control flow divergence. Speedups larger
than 1 are observed up to a standard deviation of 0.01. Surprisingly,
the speedup begins to slightly decrease beyond 64 replications,
even without perturbations. In microbenchmarks, we observed a
significant variation in speedup with different vector widths, which
we speculate depends on clang’s internal optimization heuristics.

To examine the model-dependent effects of the perturbation size,
we study the average number of additional neighbor accesses intro-
duced by the perturbations, which dominate the execution time. As
discussed in Section 2.2, the best-case speedup gives an indication
of howmany additional neighbor accesses can be tolerated. Figure 4
shows that with 64 replications, the perturbations with a standard
deviation of 0.1 introduce about 0.8 additional accesses on average.
Considering the best-case speedups of 2.1 and 1.5, a sharp decrease
of the speedup is in line with expectations.

3.3 Simulation-Based Inference
We now turn to an overall gradient-based optimization process to
examine whether the small perturbations required for fast ensemble
runs suffice to permit fast optimization progress. Figure 5 shows
the progress over the gradient descent steps and over wall-clock
execution time using single-precision floating point numbers. Our
first observation is that the progress with a standard deviation of
0.001 is excessively slow and erratic. With the standard deviations
of 0.01 and 0.1, there is no significant difference in the progress
per step. However, with vectorization, as each step is substantially
accelerated, the progress over wall-time is substantially faster. In
line with the previous measurements, the vectorized optimization
with standard deviation 0.01 attains any given log-likelihood about
1.5 times faster than the scalar runs.

4 Conclusions
In our case study, our vectorization scheme accelerated simulation-
based inference by a factor of 1.5, without using additional processor
cores. The benefits depend on the magnitude of the perturbations
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Figure 5: Gradient-based inference over the evacuation simu-
lation. While the improvement per step (a) is roughly identi-
cal in the scalar and vectorized case, the progress over wall
time (b) is substantially accelerated by vectorization.

required for effective gradient descent and on the resulting con-
trol flow divergence, both of which are model dependent. We con-
sider our approach best suited for models that contain only limited
parameter-dependent control flow, but that do not allow for more
straightforward vectorization within each trajectory (e.g., cellular
automata [7]). An important field where such models appear is
operations research. For instance, in inventory management prob-
lems [19], themodel parametersmay affect the availability of certain
products over time, while the demand is parameter-independent.

Beyond experimentation on a wider range of models, avenues
for future work include refinements to the vectorization approach.
First, all operations are currently executed using vector instructions,
even if a particular operation is required only by a single replication.
Sparsity could be exploited by falling back to scalar instructions
dynamically. Second, our implementation requires intermediate
results within sequences of operations to be stored explicitly. Us-
ing source-to-source translation in place of the current operator
overloading scheme, this overhead could be avoided without com-
plicating the user code. Third, the approach can be combined with
parallel execution across cores, e.g., in the form of a coarse-grained
parallelization of independent optimization runs to increase the
probability of converging to high-quality local optima [15].
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