
Intelligent Modeling and Simulation Life Cycle

Philipp Andelfinger
Nanyang Technological University, Singapore

philipp.andelfinger@ntu.edu.sg

Alessandro Pellegrini
Tor Vergata University of Rome, Italy
a.pellegrini@ing.uniroma2.it

Christopher D. Carothers
Rensselaer Polytechnic Institute, Troy, NY, USA

carotc@rpi.edu

Margaret Loper
Georgia Institute of Technology, Atlanta, GA, USA

Margaret.Loper@gtri.gatech.edu

Wen Jun Tan
Nanyang Technological University, Singapore

wjtan@ntu.edu.sg

Verena Wolf
German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

verena.wolf@dfki.de

Wentong Cai
Nanyang Technological University, Singapore

aswtcai@ntu.edu.sg

Abstract

Modeling and simulation is a well-proven approach for conducting what-if analyses of
complex scenarios. However, the current societal and technical challenges require increas-
ingly complex models and larger simulation experiments, which calls for more intelligent
approaches to simulation and modeling in all aspects of simulation studies. To this end, we
believe simulation and modeling can benefit from the recent advancements in machine learn-
ing and artificial intelligence (AI) as well as the emerging powerful and pervasive hardware
and computing paradigms and systems. In this article, we examine the existing AI tech-
niques and emerging hardware platforms in the context of the modeling and simulation life
cycle, broadly comprising the stages of model creation, calibration, and experimentation. We
identify key challenges on the path to deeper integration between AI and simulation tech-
niques and outline research directions towards the vision of a higher degree of automation in
simulation-supported scientific discovery.

1 Introduction

The quick advancement of machine learning and artificial intelligence (subsumed under the
acronym AI for the remainder of the article) has significantly impacted various fields, including
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modeling and simulation (M&S). Modeling and simulation have long been fundamental tools
for conducting what-if analyses of complex scenarios, facilitating decision-making in diverse
domains such as engineering, healthcare, and environmental science. However, the escalating
complexity of societal and technical challenges necessitates the development of increasingly
sophisticated models and large-scale simulation experiments. This complexity, coupled with the
limitations of traditional methods, underscores the urgent need for more intelligent approaches
to M&S.

Recent breakthroughs in AI [165] offer exciting opportunities to enhance the M&S life cy-
cle, encompassing model creation, calibration, and experimentation. These technologies, in
conjunction with emerging hardware and computing paradigms, present unprecedented oppor-
tunities to improve the speed, accuracy, and capabilities of simulation studies. AI techniques
can provide robust frameworks for addressing the intricate challenges associated with mod-
ern M&S. By leveraging these advanced techniques, it is possible to develop richer and more
efficient simulation models that can adapt to the dynamic requirements of various applications.

The M&S life cycle traditionally involves several stages [168]: input modeling, concept model
and validation, computational model and verification, experiment design, model execution, and
output analysis. Each stage presents unique challenges and demands that can be significantly
alleviated by integrating AI methodologies. For instance, process mining and symbolic re-
gression can automate the creation of initial models, while AI-techniques for simulation-based
inference and data assimilation can enhance a model’s accuracy. During the execution phase,
surrogate models can reduce computational costs, and deep learning-guided sampling strategies
can accelerate simulation experiments.

The advent of new hardware technologies tailored for AI applications, such as neuromor-
phic devices and neural processing units, further amplifies the potential of intelligent M&S.
These hardware advancements enable the efficient execution of complex models and support
the deployment of AI-driven simulation frameworks on diverse computing platforms, including
high-performance computing clusters and cloud environments. Already, the synergistic use of
heterogeneous architectures, encompassing CPUs, GPUs, FPGAs, and accelerators alike al-
lows for optimized performance and resource utilization, making it feasible to tackle large-scale
simulations with higher fidelity and speed.

To fully harness these capabilities, the M&S community must adopt a unified approach
that integrates AI techniques across the entire simulation life cycle. This integration will not
only improve the accuracy and efficiency of simulations, but also facilitate the development
of models that are better equipped to adapt to real-world dynamics and scenario scales. By
understanding modern scientific studies as integrated simulation/AI endeavors, the benefits
of simulation models based on well-understood mechanisms and of data-driven AI models are
combined.

This paper highlights the requirements at each stage of the M&S life cycle in order to identify
the major challenges and research directions on the road towards an intelligent modeling and
simulation life cycle. In contrast to previous work at the intersection of simulation and AI [165],
we clearly position the techniques, challenges, and research directions within the M&S life cycle.
In addition, we explicitly account for the evolving, now largely AI-driven, hardware landscape
and discuss its current uses in simulation studies as well as the research needs to make best
use of increasingly heterogeneous platforms in the future. In this way, we aim to provide a
cohesive and comprehensive framework that can enhance the capabilities and applications of
M&S in various scientific and industrial domains. The article builds on discussions at the
Dagstuhl seminar 22401, “Computer Science Methods for Effective and Sustainable Simulation
Studies” [44, 283].

The remainder of this paper is structured as follows. Section 2 introduces the M&S life
cycle, highlighting challenges and demands at the M&S stages using real-world applications as
examples. In Section 3, we review notable AI techniques applied to M&S, categorizing them
by life cycle stages and tasks to identify gaps requiring future research. We catalog modern
and emerging computing systems, platforms, and hardware, along with new computational
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paradigms that can support the M&S mission in Section 4. Based on all this, in Section 5
we identify areas that require further exploration and outline a roadmap for applying AI and
emerging hardware platforms to the M&S life cycle. This roadmap is aimed at helping the
research community in pinpointing potential opportunities for impactful contributions, and at
fostering collaboration among the M&S and AI fields.

2 Modeling and Simulation Life Cycle and Research Architec-
ture

This article provides a structured overview of how simulation studies can benefit from recent
and emerging AI advancements and aims to identify current research gaps within the simulation
life cycle. We take a two-pronged approach in organizing the material. First, to offer an acces-
sible overview, the classical M&S life cycle is divided into three broad stages: model creation,
model calibration, and simulation experiments. Second, we position the new advancements and
resulting capabilities in a more detailed M&S research architecture comprised of the artifacts
and processes involved in a M&S study. Below, we discuss several existing conceptualizations of
simulation studies, based on which we design our coarse-grained and fine-grained organizations.

Among the most widely embraced M&S life cycles is the one proposed by Balci [27], which
covers in detail the entities, processes, and responsibilities involved in a simulation study. The
life cycle spans the stages from deriving a problem formulation from the “universe of discourse”
to the presentation of the final results. The series of processes, some of which may be revisited as
a study evolves, includes problem formulation, requirements engineering, conceptual modeling,
architecting, design, implementation, integration, experimentation, and presentation. Before
engaging in each of the processes, verification and validation efforts ensure that the created
specifications, models, and data accord with previous specifications and the real-world problem
to be addressed. Importantly, there is a clear distinction between the conceptual model and
its implementation in the form of an executable model that is exercised as part of simulation
experiments. A conceptual model is a living document that evolves from an informal to a
formal description and serves as a means of communication among the participants in the
simulation’s development. It describes what is to be represented, the assumptions limiting those
representations, and other capabilities (e.g., data) needed to satisfy the user’s requirements.
While an informal conceptual model may be written using natural language, a formal conceptual
model is an unambiguous description of model structure in the form of mathematical and logical
relationships among the system’s components. The executable model is created by translating
the conceptual model to a modeling language or general-purpose programming language, from
which it is then compiled or interpreted for execution on a computer.

Banks et al. [29] offer a slightly more condensed overview of the steps in a simulation study
that emphasizes specific needs of M&S studies. While their organization puts less emphasis
on the need for verification and validation throughout the entire study and the possibility of
having to revisit previous steps, it allows for a clearer delineation of broader multi-step stages.
In Figure 1, we augment Banks et al.’s organization to highlight model creation, calibration,
and simulation experiments as stages that are encountered in most typical simulation studies,
and that each come with their own significant challenges. Based on this structure, in Section 3,
we discuss model creation and model calibration separately before considering their unification
and the production use of an executable model in simulation experiments.

An alternative view of simulation studies is given in the simulation research architecture by
Ihrig et al. [136]. The focus of this architecture is on the relations among the target system to
be simulated and the artifacts involved or created throughout the study. Different from the life
cycles discussed above, knowledge in the form of existing domain theory is covered explicitly as
a source to draw on in a model’s creation. For the purposes of our survey, this representation
allows us to pinpoint the processes in simulation studies that can benefit from specific AI-
supported methods. To highlight the central role of the conceptual model and to make it easier
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Figure 1: Steps in a simulation study, adapted from Banks et al. [29]. The broad stages of model
creation, model calibration, and simulation experiments serve as a coarse-grained structure in
Section 3.

to identify commonly encountered sequences of processes, we adapted and rearranged Ihrig’s
architecture to arrive at Figure 2. Here, the broader stages of model creation, calibration, and
simulation experiments are reflected as sub-graphs that may be comprised of several artifacts
and processes. For instance, model calibration involves generating simulated data in simulation
experiments using the executable model and the comparison of the simulated data to empirical
data. The numerical annotations are used in Table 1 to map entities and processes to concrete
tasks that benefit from emerging AI approaches and techniques.

3 Emerging AI-Assisted Approaches for Modeling and Simula-
tion

In this section, we walk through the main stages of the simulation life cycle, discussing recent
and ongoing work that employs AI techniques that augment, simplify, or accelerate traditional
manual, statistical, or algorithmic solutions to the problems addressed over the course of a
simulation study. An overview of the roles that AI methods play in these stages and the
employed techniques is given in Table 1.

3.1 Model Creation

On a high level [280], the creation of a simulation model involves forming hypotheses on causal
relationships based on prior observations of some system and expressing the hypotheses in the
form of a computer program that evolves a modeled system state over time. A more process-
driven view describes model creation as a software engineering endeavor in which stakeholders,
decision-makers, and model developers interact closely throughout a series of stages from an
initial problem formulation to a final certified model [27]. Both perspectives describe the model
creation as a largely manual effort in which modelers express hypotheses and domain knowl-
edge in a chosen formalism, typically combining largely static mechanisms with structural and
numerical parameters to be configured based on data during a separate calibration stage. This
creates a sharp contrast to the largely data-driven creation of models in machine learning and
artificial intelligence, where the separation between mechanisms and parameters is less clear.
In the following, we will first adhere to this strict delineation between the model creation and
calibration stages before discussing the gray area introduced by recent methods in Section 3.3.
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Figure 2: Simulation research architecture, adapted from [136] to emphasize the role of the
conceptual model and the sequence of processes. The direct path from empirical data to the
executable model (dashed arrow) is not part of traditional M&S life cycles, but represents the
need for data assimilation in the context of Digital Twins. The circled numbers serve to map
processes to the entries of Table 1.

3.1.1 Process Mining

Process mining (PM) techniques derive insights about business process executions from event
data recorded by information systems [252]. Several types of PM exist, including process dis-
covery (learning process models from event data), conformance checking (comparing event data
with process models), and process enhancement (adding frequency or performance metrics to
process models). For instance, discrete-event models of manufacturing systems can be extracted
from event logs representing observations of the timing of order arrivals and processing steps
on different equipment in the system [92]. Although process mining steps such as choosing
suitable probability distributions can be automated, the underlying structure of possible target
systems is still provided manually based on domain knowledge. Recently, large language models
(LLMs) have emerged as conversational interfaces trained on extensive data [279], achieving
near-human performance in various general tasks [328]. Their potential for PM lies in the em-
bedded domain knowledge useful for generating database queries and insights [229], their logical
and temporal reasoning capabilities [28, 176], and inference abilities over structured data [144].
LLMs facilitate the generation of textual descriptions from process data and the handling of
inputs such as event logs or formal process models [34, 35]. They can also generate process
models from textual descriptions, with recent work using LLMs to create models according to
the business process model notation (BPMN) and declarative constraints from text [112].

3.1.2 Model Creation from Natural Language

An ambitious vision is to generate model formulations directly from human-provided descrip-
tions in natural language. With the advent of transformer-based LLMs, code generation from
natural language has become practical and found widespread use [145]. In a modeling and simu-
lation context, reliable code generation in a domain-specific modeling language would empower
non-technical domain experts to efficiently formalize their knowledge as simulation models.
However, at present, specialized fine-tuning of the language models may be a prerequisite to
ensure generalization of code generation models to less widely used languages [145]. Further
limitations in the generalization capabilities have recently been demonstrated when attempting
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to generate executable and concise simulation models in the three paradigms of discrete-event
modeling, system dynamics, and agent-based modeling [93]. Ongoing efforts towards augment-
ing the decoding process to enforce adherence to a grammar or even the semantic correctness
of the generated code [194, 83, 219] as well as to systematically infer the user’s intent [236, 237]
may ameliorate this situation. On the other hand, encouraging early results in generating sim-
ulation models from natural language have been reported in the problem domains of systems
biology [185] and logistics [138]. At the time of writing, LLMs have already proven viable
as assistants supporting the critical thinking required when forming hypotheses, creating a
conceptual model, and during its formalization [2].

3.2 Model Calibration

The internal structure and state transition mechanisms defined in a simulation model are almost
always configured by some numerical parameters. The calibration stage involves identifying val-
ues for the parameters that render the simulation model a sufficiently faithful approximation of
the target system. One way to tackle calibration is through statistical point estimation, i.e., by
finding a single parameter combination that satisfies some criterion. This approach typically
takes the form of simulation-based optimization, in which simulation runs are alternated with
invocations of a search strategy that proposes parameter combinations in order to minimize
the deviation of the simulation output from the data. To combat the associated computa-
tional costs, approximate surrogate models are often used. Since the uses of simulation-based
optimization and surrogate modeling extend far beyond calibration, we defer a more detailed
discussion to Sections 3.4.

3.2.1 Simulation-based Inference

Bayesian methods offer a principled approach to inferring the statistical properties required for
calibration [153]. In traditional Bayesian inference, modelers construct probabilistic models ex-
plicitly, e.g., in the form of graphical models that combine probability distributions assumed to
define the target system’s behavior. In many cases, this allows the desired statistical properties
to be computed analytically based on the involved probability distributions.

Simulation models, however, typically do not offer this form of analytical tractability. Thus,
in simulation-based inference [71] (SBI, also referred to as likelihood-free inference), the model
behavior can only be characterized by sampling the simulation output at different points of the
parameter space, creating challenges in terms of computational cost.

Importantly, SBI characterizes the probability distribution of the parameters’ values given
the data. Hence, the results describe the level of uncertainty in the parameter’s values. For
example, SBI has been applied to characterize the uncertainty in simulations for safety eval-
uations of self-driving systems [133] and in simulation models of cardiovascular systems [292].
The identified distributions provide a rigorous justification for a calibration either by sampling
parameter values from the acquired distribution or by maximizing the parameters’ likelihood.

At the heart of Bayesian inference is Bayes’ theorem:

P (A | B) =
P (B | A)P (A)

P (B)
. (1)

In this context, A represents the model parameters and B are the data. Classical inference
methods either maximize the likelihood P (B | A) to obtain a maximum likelihood estimate
(MLE) of the parameters given the data or maximize the posterior P (A | B) to obtain a
maximum a posteriori (MAP) estimate. Alternatively, they may sample from the posterior
using Markov Chain Monte Carlo (MCMC) methods. These methods share the requirement
that the right-hand side of Eq. 1, and in particular the likelihood function P (B | A) can be
evaluated. In SBI, the likelihood function must be approximated by sampling.
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• Approximate Bayesian Computation (ABC). A common approach for sampling-
based estimation of the likelihood function is Approximate Bayesian Computation, which ran-
domly samples model parameter combinations and accepts simulation outputs within some
ϵ-region around the data. Although various improvements to the sampling efficiency of ABC
have been proposed, its enormous computational demands typically necessitate a dimensional-
ity reduction using summary statistics on the parameter space and/or concessions in terms of
the approximation quality configured through ϵ. Neural networks can be used to automate the
choice of an appropriate summary statistic and thus to reduce the cost of ABC [143]. A sound
choice of the summary statistics to learn based on simulation input-output pairs is the expecta-
tion of the posterior E[A | B], which leads to the final ABC posterior having the same mean as
the exact posterior for ϵ → 0. It has been shown that ABC can be avoided and exact MCMC-
based inference can be achieved if the simulator is differentiable, which allows a modification
of Hamiltonian Monte Carlo to be applied directly [109]. Combined with recent advancements
in achieving differentiability for various forms of simulations (cf. Section 3.4), this capability
extends the reach of SBI towards challenging simulations such as those dominated by discrete
control flow (e.g., agents making discrete decisions based on their environment).

• Markov Chain Monte Carlo (MCMC). Having access to an approximation of the
posterior or likelihood, a point estimate of the best-fitting parameters can be determined by
maximizing the likelihood. More commonly, the parameters’ distribution is characterized by
sampling from the posterior using well-established MCMC methods, which are increasingly
benefiting from machine learning methods as well.

A key component of MCMC algorithms is the transition kernel, which yields the probability
P (Xt+1 | Xt) of the next point Xt+1 in the parameter space to be visited conditioned on the
current point Xt. Central to this transition kernel is the proposal distribution, which generates
candidate points to explore in the parameter space. The proposal distribution determines how
new samples are proposed, shaping the exploration of the space and influencing the likelihood
of the proposed samples being accepted or rejected. The choice of the proposal distribution is
critical because it directly impacts the efficiency of the algorithm. Recent adaptive methods
consider the design of proposal distributions and transition kernels as reinforcement learning
(RL) tasks [64, 291, 287].

MCMC methods such as Metropolis-Hastings rely on an appropriate proposal distribution
to achieve fast convergence to the posterior. A natural way to make use of the approximation
capabilities of neural networks is to adaptively adjust the proposal distribution according to
the gathered samples. In this approach, the proposal distribution is a gradually improving
approximation of the posterior, e.g., generated by a Bayesian neural network [125].

One limitation of MCMC-based sampling is its sequential nature, which can make it enor-
mously time-consuming considering the need to reach a stationary distribution and the cost of
evaluating complex posteriors, or approximations thereof. If the posterior can be expressed as
a product of subposteriors, parallelization can be achieved by sampling from the subposteri-
ors concurrently and combining the samples to determine a sample from the overall posterior.
Recently, the use of so-called real non-volume preserving transformations (real NVPs), which
represent invertible neural transformation among density functions, has enabled parallelized
MCMC with communication cost independent of the number of subposteriors [198].

• Distribution Learning. Beyond ABC, the issue of efficiently approximating the condi-
tional probability distributions from Bayes’ theorem based on samples of a simulation model’s
input-output relation has been addressed using methods for distribution learning. In one family
of approaches, a proposal prior P̃ (A) is trained together with a posterior estimate P̃ (A | B) by
iteratively sampling from the current prior and updating the two approximations according to
input-output pairs generated by the simulation in a Bayesian regime [215, 183]. The distribu-
tions are learned by mixture density networks, i.e., feed-forward neural networks that generate
the parameters of Gaussian mixtures.

Instead of approximating the posterior directly, distribution learning can also be applied
to the likelihood function, which avoids biasing the posterior estimation by the choice of pro-
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posal prior [216]. Here, the density estimation relies on normalizing flows, which, similarly to
NVPs, model a target probability distribution by transforming an input distribution through
a sequence of bijections. Through their invertibility, normalizing flows allow their likelihood
function to be evaluated directly. Normalizing flows have also been combined with importance
sampling using intermediate learned distributions as proposals to increase the sampling effi-
ciency [235]. An alternative to normalizing flows as approximators of complex likelihood func-
tions is given by exponential families parametrized by neural networks. Compared to ABC,
these likelihood-free methods based on density estimation have proven to reduce the required
number of simulations for inference by several orders of magnitude [216].

Finally, a recent work allows inference via both the posterior and the likelihood by training
a transformer to learn the joint distribution of the model parameters and the data, both of
which are represented as tokens [104]. Via an attention mask, dependencies among parameters
and observations are enforced, allowing users to encode prior knowledge.

3.2.2 Data Assimilation (DA)

With the recent shift from static models towards Digital Twins that continuously track the
evolution of real-world systems, there is a growing need for data assimilation (DA) to ensure that
simulation models remain aligned with incoming data [128]. Traditional data-driven methods
for detecting change points that indicate the need for recalibration are well-established [6],
but recent work increasingly leverages machine learning to improve both detection and model
updating [58, 42]. For instance, by alternating simulation-based predictions of changes in system
behavior and neural predictions of the corresponding likelihood of incoming data, high-quality
estimates of change points can be determined [312].

DA is often implemented using Sequential Monte Carlo (SMC) methods, where a set of
particles—representing candidate system states—are sampled from a prior distribution and
iteratively updated to approximate the posterior distribution of system states given the ob-
servations. Since the probability associated with many of the particles will typically tend to
zero, resampling is often applied to maintain a set of particles with non-negligible likelihoods.
The resampling can be efficiently realized by a simulator’s capability to roll back the simulation
state to a previous point in simulation time, which is widely used for speculative parallel simula-
tions [96]. As demonstrated in road traffic simulations, by repeatedly advancing the simulation
for one period and gathering the model state before rolling back, a new set of particles can be
generated efficiently [301]. SMC has also been adapted to support discrete-event simulations
and applied to road traffic simulations [129].

Although it has been pointed out that DA for agent-based simulation is still a nascent
area [101], several works have proposed Bayesian methods to update agent-based models to
accord with real-time data dynamically. Several of these works rely on SMC to assimilate data
into models of passenger mobility in transportation scenarios and point out the scalability chal-
lenges in terms of the number of particles required to handle large numbers of agents [187, 278].
The granular nature of agent-based models has been exploited to achieve highly diverse sets of
particles in SMC [289]. During resampling, instead of starting from existing model states as
a whole, attributes of individual agents—here representing occupants in a smart building—are
combined across particles to increase the state diversity. An alternative demonstrated using the
classical predator-prey model maintains the correlation structure among agents by determining
a bounding volume over the likelihood function [274]. Identifying a suitable bounding volume
can be automated via abstract interpretation [70]. Finally, DA via variants of the Kalman
filter is efficient even in complex pedestrian simulation scenarios and supports the integration
of categorical variables [66, 269].

Deep learning has been applied to improve state estimation fidelity beyond traditional ap-
proaches [19]. By leveraging observations, the current model state, and the outputs of conven-
tional DA as training data, a neural network can learn to perform DA autonomously. When
the simulation continues using the DA steps generated by the neural network, a feedback loop
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emerges, enabling the learned assimilation function to account for the cumulative effects of
previous assimilation steps.

As incoming data is frequently incomplete or subject to measurement noise, error correction
methods play an important role when assimilating new data points. Neural networks can
support this process by learning error correction terms to vastly accelerate the convergence
to a ground truth [87], with the best results achieved using an intrusive form that embeds
the error correction terms directly in the model dynamics. Notably, this setting can allow the
adaptation to incoming data to be confined purely to the error-correcting terms, obviating the
need to recalibrate the mechanistic model.

Going beyond DA for updating the model state alone, works originating in process mining
have proposed methods for dynamic data-driven updates to the model structure itself. In
wafer fabrication simulations, an approach has been proposed that integrates process mining
to generate Petri nets representing the production flow with decision trees capturing the logic
of queuing and batching operations [273].

3.3 Joint Model Creation and Calibration

Methods for creating partial or full simulation models from data are increasingly blurring the
line between model creation and calibration. By identifying interpretable models directly from
data, these works are stepping stones towards a higher degree of automation in the overall
process of scientific discovery.

3.3.1 Symbolic Regression

In symbolic regression [186], models are generated by forming expressions that best approximate
the data from libraries of state variables and operators, in some cases enforcing constraints to
ensure the interpretability of the generated expressions [171]. While established methods rely on
genetic programming to form expression trees [325, 326], the problem has also been cast as a RL
task in which a policy is learned to iteratively select symbols to add to an expression [16, 186].

Recent works are moving towards neural approaches. In a direct but somewhat rigid ap-
proach, neural network-based symbolic regression can be achieved by training a neural network
with appropriately configured activation functions [255]. While sparsity can be encouraged by
augmenting the objective with suitable penalty terms, the static network topology and numeri-
cal limitations on the set of applicable operators constrain the diversity of expressions that can
be generated. In deep symbolic regression [228], RL is combined with a sampling of expressions
from a distribution defined by a recurrent neural network.

Another neural approach involves extracting symbolic representations from generic neural
networks trained on the data. This process effectively creates a symbolic surrogate model,
which not only enhances interpretability but can also improve generalization by capturing fun-
damental relationships in a structured, equation-like form [72]. Like in other areas of artificial
intelligence, pre-trained transformers are increasingly becoming the architecture of choice. In
an end-to-end training setting, a transformer is trained to map a set of input-output pairs to a
sequence of tokens representing the output expression’s symbols [36, 150]. Numerical constants
are either adjusted using a traditional optimization algorithm in a separate refinement step
or predicted directly by the transformer. This type of approach has been shown to predict
ordinary differential equation models of dynamical systems from a single trajectory [79]. Re-
cent advancements integrate Monte Carlo tree search into the transformer’s decoding process
to integrate external knowledge as feedback on the prediction quality [264].

A limitation of neural symbolic regression approaches is the need for—typically domain-
specific—pre-training. Recently, foundation models that represent general relationships be-
tween the symbolic and numerical domains have been proposed to reduce the need for special-
ized training [193].
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3.3.2 Program Synthesis

Building a simulation model typically requires integrating well-established structural and mech-
anistic properties of the target system with aspects that must be modeled stochastically or
inferred from data. Going beyond the mathematical expressions generated by symbolic regres-
sion, program synthesis [188, 115] addresses the problem of generating entire programs that
best fit some specifications given by data or other constraints. An important qualitative dif-
ference to code generation using LLMs (cf. Section 3.1.2) is that the specification is formal,
making the program’s adherence directly testable. While many of the existing works in pro-
gram synthesis are considering relatively short programs, use cases such as synthesizing agent
behaviors in multi-agent systems [207] show the promise of the approach for filling “gaps” where
certain elements of a simulation model can only be described in terms of partial properties or
constraints. Such approaches complement the more human-driven model creation from natural
language discussed in Section 3.1.

Program synthesis and deep learning come together in neurosymbolic programming (NP) [55,
271]. Residing between the extremes of purely neural network-based learning approaches and
traditional human-led programming practices, NP allows neural and symbolic program elements
to be learned jointly [271], similarly to approaches that combine differential equations with
neural model elements [240]. A key enabler of this approach are domain-specific modeling
languages in which modelers can express constraints on the programs to be learned. The
joint learning and synthesis process calls for modeling languages made up of differentiable
building blocks to allow for a gradient-based search across the high-dimensional space created
by the neural network parameters and the possible combinations of symbolic program elements
(cf. Section 3.4.3). When generating simulation models with the help of NP, user knowledge
may be introduced in the form of known partial program structures and logical propositions
to be satisfied [304], or physical constraints such as valid units [277]. In the context of physics
simulations, such approaches are termed physics-informed machine learning, with the user-
induced structure or constraints interpreted as inductive biases [151, 196, 199].

3.4 Simulation Experiments

Once a simulation model has been created, calibrated, and shown to be valid for the purposes of
a study, it is exercised as part of simulation experiments, frequently in the form of exploratory
parameter sweeps or iterative runs for optimizing simulation output statistics. In many cases,
the high dimensionality of the model parameter space puts a full exploration out of reach.
This situation is compounded by the long execution times of many simulation models and the
need to conduct several runs per parameter combination to reach sufficient confidence levels
for stochastic models. Already, various AI methods are employed to make better use of the
available resources by fast-to-execute models as well as intelligent schemes for optimization,
sampling, and output analysis.

3.4.1 Runtime Support

Simulations share with many other computational problems the opportunity to choose from
a portfolio of available algorithms. The automation of this decision-making process, typically
focusing on computational efficiency, is known as automated algorithm selection [154], the main
challenge being to identify and detect the algorithm and problem characteristics that imply a
good match. For instance, there are several algorithms for stochastic simulations of chemical
reaction systems based on the Gillespie algorithm [103], all equivalent in the generated state
trajectories but vastly different in their computational cost depending on the dynamic state of
the system. In this domain, reinforcement learning has successfully been employed to select an
algorithm at runtime [85]. Similarly, when model components are available at different fidelity
levels, an automatic selection mechanism can enhance simulation efficiency while ensuring the
required level of accuracy [51, 60].
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The selection problem becomes more involved in heterogeneous hardware environments,
where decisions must be made among sequential, data-parallel, or pipelined execution alterna-
tives on different computing devices. Here, the main focus is on characterizing the computa-
tional properties of different hardware devices such as CPU, GPUs, and FPGAs on one hand,
and model components on the other, either directly based on empirical measurements or by
pre-trained neural performance models [298].

In the context of parallelized simulations, the simulation performance hinges on the choice
in synchronization algorithms [96], but also on the degree to which the configuration of various
tuneable algorithm parameters harmonizes with the evolving model dynamics. Several works
have formulated the resulting control problems as Markov decision problems to be tackled by
reinforcement learning. Multi-armed bandit models and Q-learning have been employed for
dynamic load balancing among processors [197, 174], to dynamically restrict the aggressiveness
of speculative execution [288], and to optimize the snapshotting of model states required for
simulation rollbacks [222].

3.4.2 Surrogate Modeling

Going back at least to the 1990s, the universal approximation capabilities of neural networks
are widely used to learn surrogate models, in some contexts also referred to as meta-models, of
mechanistic simulation models [310, 31]. A common motivation is the potential for faster execu-
tion if a sufficiently small neural network can approximate the input-output relation encoded in
the original model. The literature on neural surrogates has closely followed the advancements in
neural network model architectures, with recent works making use of long short-term memory
(LSTM) networks to capture temporal dependencies [67], graph neural networks to approxi-
mate graph-centric models [38], and transformer architectures for their higher parallelizability
compared to recurrent neural networks [318].

• Sample-efficient learning for surrogate creation. In comparison to many other
training tasks, the repeatability of simulations allows ample training data to be generated. At
the same time, care must be taken that the training cost does not outweigh the subsequent
reduction in execution times. Modern training techniques aim to minimize the training time
and to balance fidelity and execution time. Classical forms of dimensionality reduction such as
principal component analysis as well as neural approaches such as autoencoders can reduce the
number of samples required [126].

A common theme in the recent literature is to apply transfer learning based on multi-
resolution data. In these approaches, the surrogate creation time is reduced by first training
on data from low-resolution simulations and gradually refining the surrogate by training on
higher-resolution simulations [263, 284, 317, 170].

To counter the biases of simulation models when compared to a real-world target system,
transfer learning can also be applied to refine a surrogate model originally trained on simula-
tion data using empirical data [164, 134, 245]. Compared to a purely data-driven creation of
predictive models, this approach integrates the domain knowledge encoded in the simulation
model while still correcting for systematic biases.

Another class of recent methods aims to reduce training times by active learning, in which
simulation runs are requested dynamically only for areas in the parameter space deemed the
most informative [26, 205]. This goal is shared with more classical examples of sequential
design strategies that aim to reduce the required number of samples for surrogate modeling or
sensitivity analysis [73], for instance, by sampling techniques based on Voronoi tessellation [74].

• Generalizable surrogates. Some simulation tasks permit the learning of generalizable
model behaviors that can be exercised across various concrete model instantiations. For in-
stance, by training a neural network to predict short-term trajectories generated by classical
car following and lane changing models for road traffic simulations, the result of a sequence of
time-stepped updates of the simulation state can be closely approximated by a single neural
“fast-forwarding” step independently of the specific road network topology [13].
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Similar approaches have been applied to accelerate molecular dynamics (MD) simulations,
where generalizable surrogates learn fundamental molecular interactions rather than mimick-
ing isolated simulation outputs. Typically, in MD simulations mutual forces between pairs
of molecules are computed at each time step, creating substantial computational load even
when studying relatively localized effects. Instead of training for a specific molecular system,
surrogate models can generalize across different force fields, chemical compositions, and ther-
modynamic conditions. Key use cases for MD lie in designing new materials and for drug
discovery, which require simulations of large numbers of molecules over extended time spans.
The use of fast, yet accurate neural surrogates has put previously intractable experiment scales
into reach, particularly when making use of large high-performance computing clusters [181].
The time-stepped nature of MD can be retained by training neural surrogates that estimate
the inter-molecule or inter-atomic potentials, which are then still applied in a series of step-wise
state updates as in classical MD. Here, active learning plays the important role of maximiz-
ing the utility of the reference trajectories from computationally expensive high-fidelity MD
simulations [322]. Particularly when considering long-range interactions, active learning helps
tackle the vastly increased feature spaces and computational demands [17].

Important use cases include determining the hydrophobicity of molecules, i.e., the degree to
which they are repelled by water, which is key in predicting the success of a new drug. By way
of a three-dimensional convolutional neural network, the required energy computations have
been accelerated by several orders of magnitude from about 35 days of CPU time to only about
7 minutes on a graphics processing unit, with errors comparable to those inherent to the MD
calculations [116].

Software frameworks such as TorchMD [221] and DeePMD-kit [315] support the close in-
tegration between MD simulations, training loops, and the execution of hybrid simulation-
based/neural models. Recent efforts to maximize efficiency on the largest available heteroge-
neous compute clusters enable detailed simulations of up to 108 atoms [241, 181].

3.4.3 Simulation-based Optimization

In simulation-based optimization (SBO) [49], which includes model calibration as a special case,
a simulation is evaluated at a series of points in the input parameter space in order to minimize
or maximize an output statistic. The computational demand of SBO can be enormous due to
the combined cost of repeated simulations and the high dimensionality of the input space in
many SBO problems.

• Surrogate-Based Optimization. While surrogate models are commonly used to re-
duce the number of required simulation evaluations, recent research on machine-learning-based
surrogates has shifted towards the use of surrogate ensembles, where solutions are determined
either by weighting candidate solutions from different surrogates or by selecting the best iden-
tified solution. A common way to form ensembles is to approximate the sampled simulation
output using different types of models such as artificial neural networks, support vector ma-
chines, and radial basis functions (e.g., [247, 327]). Alternatively, ensembles of the same type of
surrogate model can be generated from the same data based on perturbations of the simulation
output [173] or by clustering of the parameter space to handle multi-modality [142].

The availability of one or more surrogate models allows for a dynamic selection of the most
appropriate model at each iteration of the optimization loop. A natural criterion for selection
is the expected impact of a simulation evaluation on optimization progress. A related concept,
model preemption, has been explored outside of surrogate modeling [246]. The rationale behind
model preemption is that if it can be predicted that a partially evaluated solution will not
contribute meaningfully to the optimization, the simulation run can be terminated early, and the
result discarded. In road traffic simulations, a method inspired by this approach was proposed
in which simulation evaluations with low expected objective function value are dynamically
deferred to a computationally inexpensive surrogate model [11]. A closely related approach
performs weighted sampling across a set of surrogate models at each optimization iteration,
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with the model weights based on each model’s expected fidelity [282]. In a form of incremental
learning, the surrogates are trained on the fly based on the observed simulation outputs, split
into a training set and an evaluation set to determine the current model weights.

• Robust Design Optimization. In robust design optimization, the goal is to find model
parameters that lead to a simulated system behavior that is robust to noise representing ran-
domness and uncertainties such as those created by manufacturing variations. Distributionally
Robust Optimization (DRO) [242] focuses on the worst case attainable under the unknown
distributions when evaluating candidate solutions. More recently, Bayesian Risk Optimiza-
tion [297] has been proposed as a framework to handle uncertainty in SBO. By allowing the
stakeholder’s risk tolerance to be specified in the form of a risk function, the approach general-
izes beyond DRO’s worst-case assumptions. This approach has been extended to handle cases
as encountered in Digital Twin settings, where data arrives sequentially in a streaming fashion,
and where the data depends on the chosen values of the decision variables [178].

Closely related to their use in sequential design for surrogate modeling (cf. Section 3.4.2),
neural networks have been also applied to problems of this type. Here, the goal is to find
model parameters that lead to a simulated system behavior that is robust to noise representing
randomness and uncertainties such as those created by manufacturing variations [53]. Since
establishing robustness results requires several model evaluations around each candidate pa-
rameter combination, adequate surrogates are important tools to reduce the often prohibitive
cost of comprehensive robust design optimization. In this problem setting, the fidelity of the
surrogate is particularly critical as shifts in the optima can lead to falsely classifying design
candidates as robust. A critical review of various forms of surrogates [53] has found a classical
model based on Analysis of Variance (ANOVA) [239] to be more reliably accurate compared
to neural networks.

Another approach is to resort to the original simulation model when evaluating designs,
while neural networks steer the choice of candidate parameters. In a recent work, two Gener-
ative Adversarial Networks (GANs) compete in a setup where one network aims to generate
robustness-optimizing parameter combinations, whereas a second network generates noise pat-
terns aiming to maximally disrupt the system behavior [89].

• Reinforcement Learning. Simulations are commonly used in model-free reinforcement
learning (RL) as representations of real target environments. Among the key challenges in
RL is the credit assignment problem, i.e., attributing increases in the reward to specific actions
taken. Large recurrent neural networks (RNNs) are highly expressive models that can learn rich
spatial and temporal representations of data. RNN-based world models can be used to extract
useful representations of space and time from the environment to train the policy [117]. In
this way, world models facilitate generalization and allow learning action-reward relationships
from projected outcomes [118], thereby reducing the number of simulation required during the
training process.

RL using molecular dynamics simulations has been applied to de novo molecular systems
in the context of drug discovery and material design. For instance, RL was used for improved
sampling of polymer chain conformations by influencing the Brownian forces among molecules
and thus steering the simulation towards desired states [107]. Similar works have employed RL
via policy gradient [78]. Finally, Expert Iteration [18], which combines tree search to propose
concrete actions with a neural network to generalize across the entire state space, has been
used to identify starting configurations of molecular dynamics simulations that lead to desired
target states [320].

• Differentiable Simulation. Among the main enablers for the enormous strides made
in machine learning in the past decades is the capability to efficiently calculate partial deriva-
tives of loss functions defined over neural networks, which allows gradient-based optimization
methods to steer the network parameters towards a local optimum. The well-known backpropa-
gation algorithm [253] is a special case of automatic differentiation (AD) [111], which subsumes
methods that carry along derivative information with the mathematical operations performed
in computer programs written in general-purpose programming languages. After its popular-
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ization in the 1980s, AD found widespread use in solving optimization problems in modeling
and simulation studies [230], often for finite element methods [82, 68] and differential equation
models [140, 46].

As an AD run computes derivatives only along a single control flow path of the program,
stochastic simulation models with discrete control flow such as event-driven models are not
always directly amenable to AD. The literature on infinitesimal perturbation analysis [123]
describes the conditions under which averaging of AD-determined derivatives provides an un-
biased estimation as well as manual transformations to enforce these conditions for certain
models [106].

One way to achieve differentiability is to create a neural network-based surrogate model,
at the cost of extensive training and a loss in fidelity. In the past years, a myriad of directly
differentiable simulators have been presented targeting specific application domains such as
physics [258, 91, 132], robotics [130, 127, 121], and biology [209, 4, 137, 110]. The models im-
plemented in these simulators are designed to support high-fidelity gradient estimates via AD.
Since causes for discontinuities in such models are well-known, appropriate continuous approx-
imations with acceptable error bounds can be chosen [270]. In frameworks for differentiable
agent-based simulations [7, 61, 8], models are formulated purely using differentiable building
blocks, typically involving approximations of discontinuous functions and control flow elements.

Recently, more generic AD-based gradient estimators applicable to programs with discrete
control flow have emerged. These estimators combine path-wise gradients determined via AD
over sampled program trajectories with estimates of the effects of conditional branches. Stochas-
tic AD [22] takes a parametric approach, applying a custom chain rule that accounts for the
distribution of the branch conditions values. For each sample taken, in addition to the “primal”
control flow path, the computation follows an additional path that reflects the operations as if
an alternative path had been taken. While this approach requires the distribution of the branch
condition to be known, its parameters can result from previous operations. The DiscoGrad gra-
dient oracle [160, 7] is a non-parametric estimator applicable to generic imperative programs.
Here, both the effects of conditional branches and the conditions’ distributions are estimated
over a series of Monte Carlo samples, allowing differentiation across programs branching on ar-
bitrary functions of random variables. These approaches have been applied to simulation-based
optimization problems across several thousands of parameters [160].

In a related approach, the gradient of the expectation is computed via MCMC, which involves
handling the discontinuities introduced by the rejection step. By differentiating through the
entire MCMC sampling procedure, parameters that affect the posterior distribution can be
adjusted directly in the course of the sampling [23].

Beyond their uses in optimization and calibration, differentiable simulation also unlocks
opportunities to differentiate through combined computational graphs made up of neural net-
works and entire simulation models [202, 108, 270, 8]. In this combination, neural networks
can make direct use of the training signal provided by a simulation model, in contrast to most
traditional reinforcement learning methods, which treat the simulation as a black box.

3.4.4 Output Analysis

Once a simulation model has been constructed and calibrated, stakeholders and decision-makers
may be interested in various properties of the simulation output beyond predictions of the
system behavior. Classical statistical approaches focus on statistics across simulation runs in
the form of point estimates of expectations or higher moments with confidence intervals [166]
or parametric fits to output distributions [59].

• Data Farming and Explainable Artificial Intelligence (XAI). Data farming [124] is
a method that carries out large numbers of simulation runs using high-performance computing
to gather simulation outputs across high-dimensional parameter spaces. Different from the tar-
geted parameter explorations in optimization or calibration, data farming is more open-ended,
providing data that can support various potential analyses such as outlier detection, hypoth-
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esis formation, or sensitivity analysis. Rooted in military use cases, the idea of “distillations”
describes the generation of surrogate models capable of answering concrete questions based on
the collected data, e.g., to suggest mitigations of military attacks or to study the impact of
cyber warfare [124]. Unsurprisingly, in recent works the generated surrogates have often taken
the form of deep learning models. For instance, a simulation model of passengers moving in
an airport was created based on empirical trajectories and subsequently exercised to generate
passenger trajectories under various conditions to train a long short-term memory-based sur-
rogate [256]. By this form of data augmentation, deep learning’s requirement for vast amounts
of data can be satisfied without surrendering the adherence to real-world data.

In many cases, gaining a more detailed understanding of regularities in the input-output re-
lationship encoded in the model is desirable. Here, emerging XAI methods enable simulationists
to leverage neural networks’ ability to learn compressed representations of complex, non-linear
relationships. By first training a neural network on simulation input-output pairs and applying
XAI methods such as SHapley Additive exPlanations [184] to the trained network, the impor-
tance of different “features” representing the simulation model parameters is revealed [88]. In
this setting, automated machine learning (autoML) has been applied to compare different types
of surrogates without the need for manual tuning of the models’ hyperparameters [260].

• Uncertainty Quantification (UQ). A clear characterization of the degree of uncertainty
in a model is key to establish an appropriate level of trust in the generated predictions. The
sources of uncertainty in a model can be classified as aleatoric (caused by inherent stochasticity)
and epistemic (reflecting gaps in the knowledge about the system, e.g., due to sparse or noisy
data). Simulation-based inference, as discussed above, offers the advantage that the posterior
describes the uncertainty about the parameters in a principled way. Dedicated UQ methods
usually rely on statistics determined based on large numbers of model evaluations. Given the
computational intensity of many simulation models, it is natural that various forms of neural
surrogate models have been proposed [281, 146].

Ensemble approaches to UQ characterize epistemic uncertainty based on the variation among
predictions generated by different models created from the same data [57]. Here, recent work
proposed substituting entire ensembles with a neural network, achieving high-quality estima-
tions of output standard deviations in benchmark problems [254].

A use case for learning the error between high-fidelity data and mechanistic simulation
models (cf. Section 3.2) is to determine tighter uncertainty bounds than those attained by
classical UQ approaches. This idea has been applied to UQ for turbulent flow simulations
using perturbation methods [62]. By controlling the perturbations using a deep learning model
that corrects for the simulation error, originally overly conservative uncertainty bounds are
refined.

Stochastic spectral methods for UQ approximate the simulation response surface by a linear
combination of orthogonal basis functions determined based on sampled simulation outputs.
The use of tensor methods has been proposed to improve the scalability of these approaches
to high-dimensional parameter spaces [75]. Tensor methods extend matrix decomposition and
completion techniques to higher dimensions, allowing partial tensors that reflect the sampled
simulation data to be completed to form high-quality approximate surrogates using a limited
number of samples. For instance, in an electronic design automation context, the effect of
parameter variations applied to n1 × n2 circuits within each of n3 dies on a wafer can be
represented as a three-dimensional tensor [182]. In this setting, relying on tensor completion
reduced the execution time by two orders of magnitude compared to a baseline approach from
signal processing, while retaining similar levels of accuracy.

• Rare Event Simulation. The goal of rare event simulation is to sample in a way that
is likely to trigger certain occurrences of originally low probability, which traditionally is often
achieved via importance sampling [167]. In recent works, neural importance sampling methods
have been proposed in which the proposal distribution is generated by a neural network trained
on the observed samples [204, 234, 102, 131]. This idea has been extended to provide statistical
bounds on rare-event probabilities for safety-critical applications [20].
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In molecular simulations, where a rare event of interest may be a transition between two
stable states, neural networks have been applied to learn difficult-to-capture low-frequency
movements of molecules [37]. In an iterative approach, the simulation is sampled and the
training repeated to gradually improve both the neural approximation and the probability
of sampling the rare event. Differentiable simulations (cf. Section 3.4.3) have been used to
cast efficient rare-event sampling for chemical reaction simulations as a optimization problem
solvable via gradient descent [265]. The combination of high-performance compute clusters and
advanced sampling mechanisms has been used to uncover the infection mechanisms of the SARS-
CoV-2 spike protein [50]. In this work, an autoencoder operating on 3D PointNets [238] classifies
the observed system states to identify states that should be sampled next. Similarly, GANs were
used to influence the potential energy surface among molecules to steer simulations towards
a target distribution [319]. In this setup, a sampling engine draws from a current candidate
distribution, while a discriminator attempts to determine whether the samples originate from
the desired distribution.

3.5 Discussion

The above overview of existing uses of AI techniques across the M&S life cycle is summarized
in Table 1. Revisiting the research architecture of Figure 2, the circled numerical annotations
link the concrete AI-driven tasks and methods to the processes in the M&S life cycle that lead
from one artifact to another. Considering the figure, an evident gap in the existing work is
centered around domain theory: We are not aware of contemporary existing works that employ
AI methods to generate simulation meta models from existing theory, or to extract propositions
from theory to support the creation of conceptual models and to validate simulation outputs.
While there is existing work aimed at virtually all other artifacts and processes shown in the
research architecture, there are still critical limitations in terms of reliability, interpretability,
integration among AI and simulation components, and achievable scales. We will explore these
aspects in detail in Section 5 in order to formulate concise challenges, together with avenues
for research that could close the observed gaps.

4 Heterogeneous and Emerging Computing Platforms for Mod-
eling and Simulation

The design and implementation of efficient algorithms is tightly linked to the capabilities and
constraints of the machines on which they are executed. Like in other fields, the advancements
in computational methods to support M&S studies have thus closely tracked the hardware
developments from the early mainframes of the 1940s to today’s landscape of complex and
heterogeneous compute devices. The past twenty years presented two major turning points
that made it necessary for M&S algorithms to adapt to new hardware realities. Firstly, since
around 2005, the difficulty of achieving ever-smaller MOSFET scales has forced a move towards
multi-core and many-core processing [272]. Secondly, the continuing series of breakthroughs in
AI of the past years has led to a strong emphasis of cloud and high-performance computing
installations on accelerators for neural network training and inference. Hence, in terms of raw
compute power, the hardware platforms available to M&S researchers are now dominated by
graphics processing units (GPUs) rather than CPUs, with various non-traditional AI-focused
accelerators on the horizon. In the following, we briefly chart the development of simulation
algorithms throughout the past decades’ evolution in hardware design before sketching existing
uses and opportunities of the recent and ongoing developments towards AI-oriented compute
platforms.
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4.1 Balancing Hardware Abstraction and Exploitation

When designing modeling languages and simulation engines, there is a fundamental tension
between the goal of abstracting from application and hardware properties on one hand, and
full exploitation of the properties to maximize efficiency on the other. This tension is apparent
starting from the very beginnings of general-purpose computing, when Von Neumann’s im-
provements to the ENIAC computer made it possible to program the machine using switches
instead of manually rewiring its functional units. However, while this change vastly reduced
the programming efforts required for ENIAC’s uses in ballistic simulations, it also disabled the
machine’s capability for executing instructions in parallel [294].

Simulation engines reside on this spectrum between generality and specificity, in many cases
aiming at supporting a certain class of models and hardware at reasonable levels of efficiency.
Given the dominance of single-core CPUs from the 1970s to the early 2000s, a substantial
portion of the classical work in broadly applicable simulation algorithms focused on data struc-
tures for sequential CPU-based simulations [33, 266, 41, 262, 275, 190]. From the late seventies
onwards, a wealth of research in parallel and distributed simulation enabled researchers to
harness the growing availability of multi-processor machines, multi-core processors, and local-
area or wide-area computer networks. This line of research gave rise to algorithms such as
Chandy & Misra’s NULL messages [52] or Jefferson’s Time Warp [139]. Later successors to
these algorithms such as YAWNS [211] or Breathing Time Buckets [268] cater to the fact that
the efficiency of different synchronization algorithms is model-dependent [94]. Considering this
groundwork, the M&S world was well-positioned to tackle the 2000s rapid shift from single-
core to multi-core hardware. In 2013, Barnes et al [30] demonstrated superlinear speedup for
the Time Warp approach using reverse computation [47] when executed on nearly 2 million
cores of the IBM Blue Gene/Q supercomputer. Recent work on CPU-based parallel and dis-
tributed simulation focused on achieving high performance for particularly challenging types of
workloads [135, 15, 231] and on dynamic algorithm selection to achieve efficiency for ranges of
models [122, 14].

4.2 Graphics Processing Units

Early harbingers of today’s AI-driven push towards heavily GPU-focused compute infrastruc-
ture can be observed since about 2006, when GPUs first started to be widely used for various
general-purpose tasks, and increasingly for scientific simulations. Modern GPUs are massively
parallel processors following a largely single-instruction multiple-data (SIMD) architecture, ow-
ing to their heritage as accelerators for visualization tasks. Their sheer computational power is
demonstrated by the fact that many of the supercomputers of the Top500 list obtain the ma-
jority of their reported (Exa-)FLOPS from commodity or custom-designed GPUs. Although
recent architectures feature improved capabilities for handling divergence control flow within
each SIMD unit, GPUs still favor computational tasks that can be decomposed into thousands
of largely independent operations. Hence, they lend themselves to uses as co-processors to ac-
celerate specific portions of simulation models that involve expensive, yet readily parallelizable,
calculations such as those found in detailed simulations of wireless communications [25, 10].

By running large ensembles of simulation runs in parallel [141, 159, 163], GPUs can vastly
accelerate data farming experiments, optimization methods such as genetic algorithms, large
sampling experiments for rare event simulation, or perturbation analyses for uncertainty quan-
tification. While the parallelization across independent simulation runs can benefit from GPU-
specific optimizations [163], the fundamental algorithms can still largely follow their CPU-based
counterparts.

More profound algorithmic adjustments are required when aiming to accelerate an individ-
ual simulation run using GPUs. While model-specific implementations of individual simula-
tion models can achieve significant speedup [226, 90, 95, 298], a more generic approach is to
design GPU-specific variations and specializations of CPU-based algorithms for parallel and
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distributed simulation [225, 218, 179, 248, 9], which have proven to achieve order-of-magnitude
accelerations and more over their CPU counterparts.

Another line of research applies relaxations to express simulation models as computational
graphs [7, 61], originally motivated by the goal of facilitating automatic differentiation. If
explicit parameter-dependent control flow in the form of discrete branches is eliminated through
model-specific relaxations, a state update from one point in simulation time to the next often
takes the shape of a largely smooth function over RN , where N is the number of state variables.
Aside from facilitating gradient estimation, an equally important benefit of the resulting model
formulations is their suitability for execution on GPUs, which favor single-instruction, multiple-
data workloads with minimal branching. In addition, the relaxed model can be executed directly
via machine learning frameworks such as Tensorflow or Torch, enabling their direct integration
into AI training and inference pipelines.

4.3 Neural Processing Units

Further opportunities for accelerated computing are offered by Neural Processing Units (NPUs),
which in recent years have found their way into high-performance computing installations and
data centers [56]. These specialized chips follow architectures optimized to the needs of neural
network training and inference, i.e., matrix multiplication, element-wise multiplication and
addition over vectors, and vectorized application of activation functions. Among the typical
features of NPUs is the support for efficient operations on reduced-precision floating point
number representations using 16 and fewer bits. For instance, Google’s Tensor Processing
Units have been shown to outperform high-end GPUs both in terms of computational speed
and in power consumption in the MLPerf training benchmark [147].

4.4 Field-programmable Gate Arrays

Reconfigurable hardware in the form of Field-Programmable Gate Arrays (FPGAs) adds the
opportunity to synthesize specialized logic for a given problem. Since FPGAs often outcom-
pete GPUs in terms of latency and power consumption, they are particularly relevant for
handling real-time data. NPU architectures like Microsoft Brainwave [63] can be synthesized
onto FPGAs, allowing the datapaths and precision to be tailored to a given neural network
architecture [39]. The ability of FPGAs to accelerate simulations has been shown in the con-
text of traffic simulations [300] and, more broadly, for discrete-event simulations [243]. Given
their capability to achieve extremely low latencies and low energy consumption, FPGA-based
simulations hold promise for prediction tasks and what-if analyses in the context of Digital
Twins.

4.5 Cloud Computing

To make best use of cloud computing platforms, “simulation-as-a-service” frameworks have
been proposed, which offer interfaces that largely abstract from the execution of the model on
a suitably equipped machines as well as the collection and visualization of results [314, 276, 261].
In this context, the recent literature underlines the need for achieving reproducibility by making
use of virtualization and containerization [201]. On the other hand, it has been observed
that cloud computing’s multi-tenancy configurations, in which several virtual machine’s may
share and dynamically migrate across physical machines, introduce challenges for synchronizing
parallelized simulations, motivating virtualization-aware scheduling methods [313, 307]. To
cater the non-uniform memory access of typical cloud servers, synchronization algorithms may
also need to be adapted [223].
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4.6 Neuromorphic Computing

Considering emerging and future changes in AI-oriented compute infrastructures, processing
elements that depart from strictly Von Neumann-type architectures may soon find their place
in the hardware mix readily available to researchers. For instance, neuromorphic chips, which
mimic the structure of neurons in the human nervous system, are key enablers for large-scale
experimentation in neuroscience on one hand [203], and AI tasks on the other [80, 200]. For
example, the IBM NorthPole processor [200] obtains 25 times frames per second (FPS) per
watt, and a 22 times lower latency than state-of-the-art GPU performance for the ResNet50
benchmark network. Closely integrating memory and compute elements, these chips are used
to implement both traditional artificial neural networks and spiking neural networks, often in
an approximate fashion. Beyond digital neuromorphic chips [97], analog designs [220] point
towards the potential for a more widespread renaissance of analog computing, with recent
successes demonstrating high efficiency for linear algebra operations in an AI context [5]. For
a recent comprehensive review and discussion of neuromorphic computing “at scale”, see [259,
162].

4.7 Bio-Computing

Another ongoing line of research is considering entirely biological forms of computing, using
materials such as DNA and proteins as computational substrates [114, 105]. For instance, with
DNA taking the role of storage and molecular circuits to implement logic gates, non-trivial
programs can be realized [224]. A notable emphasis of recent research in bio-computing lies on
implementing neural networks [302, 306]. Although the energy consumption of neural networks
based on bio-computing compared to digital implementations is minimal, substantial hurdles
such as the difficulties associated with introducing information into molecular circuits, retrieving
computational results, handling noise, as well as minimizing bias must still be overcome before
practicality for real-world applications can be achieved [306].

4.8 Quantum Computing

Finally, quantum computers are already being used experimentally and are expected to be
able to simulate quantum phenomena such as quantum chemistry and quantum many-body
problems as well as solve certain classes of optimization problems at vastly higher speed than
traditional Von Neumann machines [250]. Given the probabilistic nature of quantum computers,
the logic implemented in quantum circuits establishes a random distribution over possible
outcomes, which is sampled from upon measurement. Under varying assumptions regarding
the capabilities of practical quantum computers, quantum algorithms for linear algebra and
various AI tasks have been proposed that would offer up to exponential speedup [84]. For
optimization problems, quantum amplitude estimation (QAE) [40] has been shown to offer a
quadratic speedup over algorithms on traditional architectures. Since QAE is equivalent in
result to Monte Carlo estimation of a stochastic function’s expectation, this benefit translates
to simulation-based optimization problems as well [98, 76]. Hence, the availability of practical
quantum computers would revolutionize M&S studies requiring high-dimensional parameter
estimation and model calibration.

4.9 Exploiting Heterogeneous Hardware Platforms

Modern high-performance compute clusters and data centers already offer various combinations
of CPUs, GPUs, FPGAs, and NPUs. As sketched above, each of these types of heterogeneous
processing elements follows its own programming model and performs best for particular com-
putations under various constraints in terms of memory requirements, types of instructions
and precision, latency, and degree of parallelism. The AI field has responded to the need for
abstracting from the underlying hardware by the emergence and sweeping success of machine
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Stage Challenge Research Directions

Model Creation Forming hypotheses on the mech-
anisms underlying complex pro-
cesses

• Relational learning and causal modeling
• Rigorous logical reasoning

Model Calibra-
tion

Exposing information on simula-
tions’ output-to-parameter rela-
tionships

• Generalized and sample-efficient gradient estima-
tion

• Alternative modes of model exploration

Joint Model
Creation and
Calibration

Model synthesis at scale • AI-driven search strategies
• Accounting for explicit and implicit domain knowl-

edge

Simulation
Experiments

Efficient execution of heteroge-
neous simulation/AI experiments
on heterogeneous hardware

• Interoperability among simulation and AI platforms
• Experiment-aware job scheduling
• Malleable Simulation Models

Table 3: Research challenges on the path towards an intelligent modeling and simulation life
cycle.

learning frameworks such as Tensorflow or PyTorch, which allow models and training proce-
dures formulated in high-level languages to efficiently be mapped to the available hardware. In
cloud environments, virtualization and containerization is widely used to lift dependencies of
AI software pipelines on machine-specific software environments and to achieve reproducibil-
ity [257].

While the M&S field has not caught up with the ease of use of AI frameworks, several frame-
works allow modelers to express simulation models in a hardware-agnostic way, largely shielding
them from the complexities of the target platform [157, 248, 158, 212]. These frameworks gen-
erate hardware-specific code from high-level model descriptions in domain-specific modeling
languages. This way, the same model description can be compiled for different hardware tar-
gets, e.g., for CPUs or GPUs. However, making full use of heterogeneous hardware platforms
requires the combined use of different types of processing elements for different portions of a
simulation [210]. An extension to the agent-based modeling language OpenABL [69] employs
performance predictions and autotuning for this purpose, dynamically distributing different
model portions to CPUs, GPUs and FPGAs, while accounting for communication costs [299].

Tomorrow’s spectrum of compute hardware available for M&S studies will likely comprise a
variety of digital and analog computing devices, which will be able to serve the needs of models
at various levels of fidelity and speed. At the same time, this will call for model representations
of various types, from traditional CPU-based models and data-parallel variants, to relaxed
formulations with limited explicit control flow or neural surrogates trained purely on pairs of
simulation inputs and outputs. The hurdles and research opportunities on the way towards
making best use of heterogeneous models and platforms will be explored in Section 5.4.

5 Research Challenges and Roadmap for Intelligent Modeling
and Simulation Life Cycle

The previous sections summarized the landscape of existing uses of AI approaches, techniques,
and the emerging hardware landscape to support simulation studies. In the following, we revisit
the individual steps of the M&S life cycle to identify research gaps in the form of four challenges
which, if tackled, would lead to a deeper integration between the simulation and AI fields and to
a higher degree of automation in simulation-oriented scientific experimentation and discovery.
For ease of navigating the text, Table 3 summarizes the challenges and research directions
detailed below.
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5.1 Model Creation

As discussed in Section 3, the main techniques that support modelers in determining a model’s
structure and logic from data or informal descriptions fall under the categories of process min-
ing or model creation from natural language. Of these, the former currently is largely focused
on identifying processes about which substantial a priori knowledge is available, e.g., for deter-
mining the specific sequence of activities out of a well-understood pool of possible activities in
a supply chain process. At the other extreme, model creation directly from natural language
currently lacks the interpretability, reliability, and justification that would create sufficient trust
in the generated models to apply them to real-world use cases. This is in line with the afore-
mentioned lack of work on employing AI-driven automatic reasoning to deduce propositions
from domain theory, and on evaluating data in light of these propositions (Section 3.5). We
postulate that what is missing are reliable techniques to translate hypotheses gathered from
data and theory into mechanisms executable as part of simulation models, corresponding to the
processes “identification of structure and parameters” and “deductive reasoning” in Figure 2).

Challenge: Formulating justified hypotheses on the mechanisms underlying
complex processes.

5.1.1 Research Direction: Relational Learning and Causal Modeling

Relational learning identifies interactions among entities in a graph and characterizes them
quantitatively [155]. Such a representation can provide pointers towards mechanisms underly-
ing the target system’s behavior. The focus on interactions makes the approach particularly
attractive for agent-based modeling [244], where the overall system behavior emerges from lo-
calized interactions among large numbers of agents [113]. Recent relational learning methods
tend to employ neural networks, e.g., variational autoencoders (VAEs), in order to infer in-
teractions from data [156] and have been applied to inferring interactions within biochemical
systems [177, 311] and multi-agent systems in robotics [172].

In comparison to relational learning, which considers the general problem of identifying
(any form of) dependencies between entities or variables, causal modeling aims to identify
cause-and-effect relationships between variables and estimating the impact of interventions.
Traditionally rooted in statistical analysis, it increasingly leverages machine learning techniques
to infer causal relationships from observational data automatically. For example, VAEs and
transformers can learn hidden patterns that capture the underlying causes in data. While
transformers can leverage the attention mechanism to identify potential causal structures [195],
VAEs focus on learning disentangled latent representations [305]. If each dimension in the latent
space corresponds to an independent causal factor, then manipulating one dimension leads to
predictable changes in the reconstructed data while other dimensions remain unaffected. This
allows for the identification of potential causal relationships between the latent factors and
the observed variables, known as causal discovery. Reinforcement learning has also been used
to explicitly identify the underlying causal structure of a system, where an agent learns to
navigate the space of causal graphs, whose nodes and directed edges represent cause-and-effect
relationships [329]. Once the causal structure is inferred, variational inference can be used for
causal inference [100]. By intervening on specific dimensions of the latent space (i.e., changing
their values), we can observe how these interventions propagate through the decoder and affect
the reconstructed data. This enables the estimation of the causal effects of interventions on the
observed variables.

The insights gained from relational learning and causal modeling can be viewed as justified
hypotheses on interactions and cause-and-effects relationships, which modelers can draw on as
building blocks when constructing mechanistic models.
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5.1.2 Research Direction: Rigorous Logical Reasoning

Even with the early successes of using LLMs to support modelers in identifying and formalizing
hypotheses on mechanisms as a basis for simulation models, the approach still suffers from
current LLMs’ limitations in handling tasks that require rigorous forms of reasoning [286, 21,
267]. To allow modelers to rely on the identified model building blocks, they must be able to
trust that the mechanisms are not in violation with established facts about the system to be
modeled.

Prompt engineering is a common technique to enhance the reasoning abilities of LLMs
without requiring additional training steps or modifications to the LLM’s architecture. A
prominent example is chain-of-thought (COT) prompting [293], in which the LLM is prompted
to state the full sequence of logical steps taken in a reasoning task. COT prompting has
been shown to improve the coherence of LLMs in various benchmarks focused on reasoning.
Various subsequent works have proposed prompting techniques that guide an LLM to lay out
its reasoning in a step-by-step manner using semi-formal or formal descriptions [43, 175, 303].

The adherence of LLMs to an existing knowledge base can also be improved through targeted
fine-tuning [45]. By gradually maximizing the probability the LLM assigns to a set of facts,
the LLM is grounded in an existing knowledge base.

A line of research that departs from purely neural architectures is neurosymbolic AI [99].
The fruitful combination of neural and symbolic model elements has been studied for decades,
but the enormous successes and observed limitations of LLMs have created an explosion of
research towards this goal, which has been termed the “the third wave of AI” [99]. Here, we
are focused on LLM-oriented work that may permit a direct interaction with modelers in the
future. Relevant work outside the LLM realm is discussed in Section 5.3.2.

Many recent works focus on coupling LLMs with solvers for various logics in order to intro-
duce rigorous reasoning capabilities. Typically, this takes the form of a feedback loop [214, 213]:
first, a user-provided prompt in natural language is translated by an LLM to a logic problem,
e.g., in terms of first-order logic, constraint satisfaction, or satisfiability. The solver’s output
is fed back to the LLM, which generates a user-readable conclusion or continues the cycle to
conduct further reasoning. Error messages from the solver may also be fed back to the LLM
to allow for iterative refinement or correction of the problem formulation.

Considering the time-consuming nature of model creation as part of the M&S life cycle,
automatically verifying the plausibility of mechanistic hypotheses could vastly accelerate this
initial phase of simulation studies. For static properties, this could take the form of integrating
LLMs with logic solvers as described above. By the use of simulators driven by suitable formal
modeling languages, it would further be possible to evaluate dynamic properties and thus also
to automatically generate mechanisms that produce certain expected outcomes. We are not
aware of any works that explore this form of neurosymbolic AI for simulation model creation.

5.2 Model Calibration

In present scientific studies, neural models and simulation models are often still treated as
fundamentally different categories. Among the reasons for this delineation is the neural models’
data-driven creation. While the choice of architectures and hyper-parameters of neural networks
do allow prior knowledge and constraints to be encoded, the key enabler for these models’
sweeping successes is the directed search for a “locally optimal” fit via gradients computed using
backpropagation. Derivatives, which can provide important indications for the relationships
between the model outputs and the inputs, are not easily available for many types of simulations,
with hurdles ranging from the purely technical [1] to more fundamental difficulties such as the
joint occurrence of stochasticity and discrete control flow [22, 160].

In line with other authors [165], we believe that departing from the traditional view of
simulation-as-blackbox will help close the gap between the AI and simulation world by enabling
more tightly integrated neural/simulation models and more efficient experimentation, e.g., by
a joint calibration and training of simulation models involving neural components.
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Challenge: Exposing information on simulations’ output-to-parameter
relationships.

5.2.1 Research Direction: Generalized and Sample-Efficient Gradient Estimation

The local sensitivity information provided by partial derivatives is useful not just for calibration,
but also for general optimization, sensitivity analysis, and uncertainty quantification. Often,
the calculated gradients are those of the expectation of a stochastic simulation output with
respect to the parameters. As discussed in Section 3.4.3, a number of specialized or generic
estimators exist that apply automatic differentiation (AD) to simulation models, often based
on relaxations or restrictive assumptions to handle discrete model elements. An alternative
are stochastic black-box estimators such as those from the REINFORCE family [321], which
are unbiased if parametrized for the model’s underlying distribution, or generic estimators that
apply smoothing to the original function [208]. Unfortunately, these black-box estimators often
suffer from high variance, requiring tailored variance reduction methods, e.g., control variates,
to be competitive with AD-based approaches.

Calibration and inference tasks could be vastly accelerated by efficient, i.e., low-variance
and generic methods to calculate gradients of expectations, but also of other statistics such
as higher moments, likelihoods, or extrema of state variables. One of the main challenges lies
in capturing the regularities in the often highly variable behavior of stochastic simulations,
even at a fixed parameter combination, without the need for extensive sampling. AI methods
can play an important role in interpolating between the sampled points in the output space.
For instance, local neural surrogates could be trained to predict the distribution of simulation
outputs at a given point in the input space from a few samples gathered by simulation. Beyond
neural networks, representing the gathered high-dimensional samples in a sparse tensor could
allow tensor completion methods [75] to “fill in the blanks”.

5.2.2 Research Direction: Alternative Modes of Model Exploration

Determining whether a model is consistent with available data may not only require a reasonable
fit of an output distribution’s shape to available data, but also guarantees that certain dynamic
properties are upheld. Methods from (often stochastic) model checking [65] are applied to
determine whether user-provided propositions are satisfied. This is achieved either by repeated
executions of the unmodified model, or by different forms of abstract interpretation [70], which,
instead of executing the program over concrete states, evaluates the program over abstract
states, e.g., intervals that variable values may lie in. However, even in the deterministic case,
providing guarantees that certain states are unreachable can easily become intractable beyond
low-dimensional state spaces and short trajectories.

Abstract interpretation has also been used to approximate the expectation of a program’s
output distribution given an input distribution [54]. The resulting smoothed approximation
of the input-output relationship facilitates calibration through numerical optimization. Again,
the challenge is to capture the vast number of possible state trajectories of non-trivial programs
at sufficient accuracy without exceeding memory and execution time limits.

A similar issue arises in simulations of quantum circuits [148], where each gate propagates
a distribution of possible states whose dimensionality grows exponentially with the number of
qubits. Here, probabilistic modeling via transformers has been employed to counter the state
space explosion [48]. Applying such probabilistic approaches to model checking could enable
analyses at larger scales, but will require careful consideration of the possible loss in fidelity or
subsequent verification using traditional methods.

Finally, methods from reversible computing [227] have been used to avoid the large number
of forward simulations required to establish whether certain model states are reachable. By
reversing the model logic, the simulation can be initialized at a known or (un-)desired target
output state and executed backwards in time to determine starting conditions that may lead
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to the configured output states. The utility of this approach has been demonstrated in the
context of road traffic and wafer fabrication simulations [12, 169]. Since far from all operations
found in typical simulation models are bijections, the reverse execution involves branching
points at which there are two or more valid previous simulation states. Efficient strategies to
solve the resulting search problem are likely to be model-dependent, as knowledge of the model
logic may rule out many reverse trajectories without requiring a full exploration. The recent
successes in training problem-specific deep learning-based search heuristics for combinatorial
optimization [149] make it plausible that learned heuristics could outperform generic or man-
ually constructed strategies for reverse exploration of simulation models as well. In this field,
there has recently been significant interest in deep learning-based methods, in particular for
learning heuristic search policies [192]. These neural heuristics have been shown to excel both
for classical tasks such as the traveling salesman problem and for more domain-specific ones
such as vehicle routing [323].

5.3 Joint Model Creation and Calibration

As discussed in Section 3.3, there have been promising early successes in automatic generation
of the structure and parameters of entire simulation models from data. However, at the time of
writing, these approaches have been demonstrated for models of relatively modest scale [191,
161]. Achieving the lofty goal of real-world practicality, new methods will be required to tackle
the vast search space of candidate models over combinations of discrete and continuous decision
variables. It seems likely that intelligent and problem-specific search strategies will be needed,
combined with a close integration of explicit, and possibly also implicit, domain knowledge to
constrain the search space.

Challenge: Model synthesis at scale.

Considering the research architecture from Figure 2, this challenge concerns the automation
of instantiating a domain theory and of implementing the resulting conceptual model.

5.3.1 Research Direction: AI-driven Model Search Strategies

The past years have seen promising advances in system identification for model classes such
as population-based chemical reaction networks [161] and multibody systems [24]. The search
across candidate model structures is often achieved by meta-heuristics such as genetic algo-
rithms or particle swarm optimization [3].

A different problem formulation casts the identification of chemical reaction networks that
can reproduce available data as a tree search [191]. In this approach, the nodes on each level
of the search tree correspond to candidates for one additional reaction, which is chosen as the
reaction that minimizes the variance between selected points on the empirical and simulated
state trajectories. A subsequent classical mathematical optimization calibrates the tentative
model generated so far to the observations.

The formulation as a tree search problem opens up the opportunity to employ different
search strategies. As mentioned above, deep-learning based heuristics have been shown to be
competitive in solving several combinatorial optimization problem [192]. Model synthesis is
a natural application area for these approaches, where capturing some of the regularities that
govern the link between model elements and outputs could provide important guidance towards
well-fitting models.

5.3.2 Research Direction: Accounting for Explicit and Implicit Domain Knowl-
edge

Beyond efforts towards a more directed model search, reducing the search space would also
accelerate model synthesis and extend its reach towards larger models. A second reason for
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reducing the search space is to counter the issue of non-identifiability [285]. In many cases,
there are various models that are equivalent in their ability to generate outputs in line with the
available data. When considering simulation models, this is particularly problematic because of
their dual role not just as prediction engines, as in identification via neural networks [232], but
also as interpretable manifestations of plausible mechanisms for the data-generating process.

To improve both the tractability and identifiability, it is key to rule out candidate models that
are implausible or violate problem-specific properties outside the mere fit to the observations.
This perspective changes the approach from black-box to grey-box system identification [180].
A challenge lies in obtaining and formalizing model constraints, which may stem from a general
domain theory, assumptions by the modelers, or even commonsense reasoning. While in conflict
with a full automation of the model synthesis process, a “skeleton” of a conceptual model that
explicates known properties of the model could form a basis for restricting the search space.
Here, LLMs can play two important rules. Firstly, translating from descriptions of model con-
straints specified in natural language to formal constraints applicable during automatic model
search would allow non-technical domain experts to specify their assumptions in an informal
manner. Secondly, by deriving implications from the stated domain knowledge, determining
probable unstated assumptions, as well as augmenting this information using LLMs’ capabil-
ities for commonsense reasoning [324], the search space can be further reduced. Constraining
the model search in this manner bears similarities to physics-informed learning approaches
(cf. Section 3.3), but relies on constraints automatically determined from explicit or implicit
sources and targets the creation of purely mechanistic simulation models.

Importantly, the generated constraints can be justified to the modeler in natural language.
Integrating LLMs with rigorous logical reasoning capabilities, as described in Section 5.1.2,
would reduce the need for verification and increase trust in the correctness of the search space
reductions.

5.4 Simulation Experiments

Given the trends outlined in Section 3, there is a clear trajectory towards complex experiments
involving combinations of AI and simulation tasks, one evident example being reinforcement
learning over simulated environments as commonly used in robotics. However, the increas-
ing use of AI to form surrogate models, to steer sampling and optimization processes, and
for output analysis creates tasks comprised of individual steps that are heterogeneous in their
computational characteristics and resource requirements. Considering the equally heteroge-
neous nature of cloud and high-performance computing environments available to researchers
today, achieving high utilization puts new demands on the interface between the software and
hardware side of simulation studies.

Challenge: Efficient execution of heterogeneous simulation/AI
experiments on heterogeneous hardware.

5.4.1 Research Direction: Interoperability Among Simulation and AI Platforms

Over the years, both academia and industry have proposed various simulation runtime environ-
ments, each characterized by distinct capabilities, performance profiles, and hardware compat-
ibilities. The performance requirements of simulation tasks vary over the simulation life cycle,
e.g., model calibration may require numerous simulation runs at small scenario scales, whereas
applying the simulation model for a real-world purpose may require only a few simulations runs
at large scenario scales. To cater to this variability in requirements, reducing the overall time to
complete the required model executions over the stages of an entire simulation life cycle would
require switching among simulation frameworks or executing several in conjunction. Although
existing architectures and standards support the coupling of simulators in a principled man-
ner [77, 32], there is a lack of generic mechanisms for targeting multiple simulators using the
same code, and for transferring dynamic model states across simulators. Such capabilities would
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not only streamline the modeling process but also enhance the reproducibility and portability
of simulation experiments. By focusing on cross-platform compatibility, researchers and prac-
titioners can leverage the strengths of different runtime environments, optimizing performance
and resource utilization without compromising on the ease of model development and deploy-
ment. Making this possible will require new techniques and tools that enable model developers
to formulate their models and execute them across multiple platforms without modification.
Code generation from domain-specific languages is customary in several M&S paradigms [233]
and application domains [308, 119, 152], with recent progress towards supporting heterogeneous
architectures and more broadly defined classes of agent-based models [299, 248].

To broaden the scope beyond simulation models, towards experiments involving simulation
and AI aspects, it is critical to take into account the interactions between the two realms and the
specific performance profiles and compatibilities of AI software components. If simulation/AI
experiments are modeled as a unit, the code generation can maximize not only the efficiency
of the simulation and AI components when executed together, but also the interfacing between
the two. This enables a loose coupling among components to be retained on a conceptual level
for maintainability, while the generated code may employ shared memory or device-specific
capabilities, such as remote direct memory access, to minimize the overhead for inter-component
communications [217]. As a simple example, during training of a neural surrogate model,
placing both the simulation model state and the neural network’s parameters in GPU memory
could reduce the need for expensive GPU-to-host data transfers required in a traditional loose
coupling between a simulator and an AI framework such as Torch.

To achieve this ambitious goal, we propose the adoption of model-driven engineering (MDE) [251]
techniques beyond the well-established reliance on modeling languages in M&S. MDE facil-
itates the creation of platform-independent models that can be systematically transformed
into various platform-specific implementations, ensuring consistent and accurate communica-
tion between disparate systems [189]. This approach mitigates the challenges of manually
re-implementing simulation models for different platforms, reducing errors and enhancing main-
tainability.

By employing standardized modeling languages and tools, MDE enables the seamless in-
tegration of heterogeneous simulation environments. Building on existing efforts in modeling
the activities and artifacts involved in simulation experiments [295], metamodels and domain-
specific languages will be needed to explicitly specify the involved AI and simulation compo-
nents, their performance profiles, as well as their interactions.

5.4.2 Research Direction: Experiment-Aware Job Scheduling

Given the opportunity to assign simulation and AI tasks to various combination of hardware
devices, an optimal assignment is heavily dependent on the overall experiment. As an ex-
ample, consider the use of active learning to train a neural surrogate for a simulation model
(cf. Section 3.4). In this setting, neural network training steps are interleaved with simulation
runs to gather additional information at dynamically identified points in the parameter space.
This setup combines the dense and predictable computational structure of the forward and
backward passes during neural network training with the sparse and highly data-dependent
computations of typical simulations. The former is well-served by the execution on a GPU,
whereas the latter may benefit more from the highly advanced capabilities of modern CPUs to
handle complex control flow. However, the need for data exchange between the simulation and
the neural network training may still lead to the a purely GPU-based execution being the most
efficient option.

More broadly, as different types of simulation experiments come with different combinations
of tasks and varying opportunities for parallel or distributed execution (e.g., generations of
simulation runs when optimizing using genetic algorithms), there is a clear need for experiment-
aware job scheduling mechanisms capable of making the best use of the available hardware.
By exploiting knowledge of the computational patterns associated with different experiments,
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job scheduling and hardware assignment mechanisms can better predict the static or dynamic
resource demands and thus make decisions closer to the optimum. Recent work in deep learning-
specific job scheduling [309] can be a stepping stone towards this vision, but will need to be
augmented to tackle the characteristically high dynamism in simulation tasks and their resource
and time demands, as well as the vastly increased space of candidate task-to-device mappings.
In the past years, various approaches for machine learning-supported job scheduling have been
proposed, typically combining reinforcement learning-based scheduling policies with dynamic
predictions of job execution times based on input parameters and intermediate outputs [86, 316,
290, 206]. Emerging approaches towards automating the design of simulation experiments [296]
can help in gathering the information required to find hardware assignments and schedules that
minimize a study’s “time-to-insight”.

5.4.3 Research Direction: Malleable Simulation Models

In the presence of a variety of heterogeneous compute devices, it is desirable to allow users
to run their simulation models on any of the available and unoccupied devices, as long as the
achievable fidelity suffices for the purposes of the present study. We have seen in Section 4 that
specialized and analog accelerators are entering the hardware landscape offered to researchers.
Hence, achieving a transparent hardware mapping requires high-level model formulations that
allow not just for a hardware mapping across digital computing devices, but that can compile
models to traditional machine code as well as forms suited for execution on analog hardware.
For instance, when targeting neuromorphic hardware, this could mean translating models to
neural networks. A direct translation of this sort has been achieved for logic formulae in the
context of neurosymbolic AI [249]. In the simulation realm, works proposing smoothed model
approximations are stepping stones towards this goal, but are currently confined to specific
classes of models [8, 61]. Error bounds or empirical results will be needed to judge whether the
error created by such relaxations can be tolerated.

The capability for targeting hardware platforms at different levels of fidelity and speed opens
up new opportunities for optimizing the integration of simulation runs into larger experiment
setups. In experiments where sampled simulation outputs serve as input to learning, as is often
the case in reinforcement learning and surrogate modeling, simulations at the full fidelity of
an original simulation model may not always be needed. For instance, at the early stages of
a reinforcement learning procedure, actions may be largely random and thus comparatively
rough reward estimates may suffice to make progress, whereas towards the end of a training
procedure, small variations in reward may be decisive to fine-tune the reinforcement learning
agent’s behavior.

Regardless of whether the available model variants stem from classical surrogate modeling
or are generated from a high-level model description as sketched above, a negotiation between
the “learning” and the simulation parts of an experiment’s feedback loop will be needed to
maximize the key metric of learning progress per unit (wall-clock or compute) time. On the
AI side, problem-specific estimation or, more generally, AutoML techniques [120] could deter-
mine the required level of fidelity at the current learning stage. On the simulation side, the
problem presents as a form of model selection [81], the key requirement being an accurate char-
acterization of each representation’s fidelity, either by static analysis or dynamically through
measurement.

6 Conclusions

Our aim is for this article to serve as a snapshot of the existing ways AI is supporting and
enhancing the various tasks within the simulation life cycle, and to anticipate future opportu-
nities and challenges towards this goal. Taking a step back from specific problem settings and
techniques, most of the existing work broadly relies on two capabilities of AI techniques: func-
tion and distribution approximation via deep neural networks (e.g., of simulation input-output
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relationships, likelihood functions, error terms), and the translation from unstructured or infor-
mal data to formal representations (e.g., determining causal relationships from data, generating
numerical or mechanistic model building blocks from natural language). While neural approxi-
mations and surrogates have been studied for decades and have been fruitfully applied at nearly
all stages of the simulation life cycle, the generative abilities of recent AI architectures point to-
wards an increasing amount of automation of previously purely human-driven steps in scientific
studies.

We believe that the main hurdles towards a closer integration between AI and simulation
pertain to two main aspects. First, many conceivable use cases for AI in simulation studies
are unlikely to take root without offering the guarantees, well-justified sequences of steps, or
proofs obtained by rigorous logical reasoning. While important ongoing work explores the limits
of such capabilities within current state-of-the-art models’ probabilistic and inductive type of
reasoning, a turn towards neurosymbolic AI seems inevitable to credibly produce and assess
artifacts involved in simulation studies of real-world criticality. Second, and more broadly,
a shift is needed towards unified AI/simulation models and experiments. Given the reality
that mechanistic and neural models are now routinely coupled in AI training loops, used as
problem-dependent substitutes in surrogate modeling, and combined to form hybrid models, the
traditional delineation between AI pipelines and simulation workflows or models is becoming
less tenable. In this light, it is essential to expose, and subsequently fulfill, the respective
requirements of AI and simulation aspects of a study, be it through a closer integration of
models via differentiable simulation models, better utilization of AI-oriented compute platforms
by hardware-agnostic model formulations, or by experiment-aware hardware assignment and
scheduling methods.

The authors hope that by sketching pathways towards such a coalescence of AI and simu-
lation techniques, this article will contribute to accomplishing the vision of an intelligent M&S
life cycle.
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University Electronic Press, Linköpings universitet Dresden, Germany, 2011.

[33] Rudolf Bayer. Symmetric binary B-trees: Data structure and maintenance algo-
rithms. Acta informatica, 1(4):290–306, 1972. ISSN 0001-5903,1432-0525. doi: 10.1007/
bf00289509.

[34] Alessandro Berti, Daniel Schuster, and Wil MP van der Aalst. Abstractions, scenarios,
and prompt definitions for process mining with llms: a case study. In International
Conference on Business Process Management, pages 427–439. Springer, 2023.

[35] Alessandro Berti, Humam Kourani, Hannes Hafke, Chiao-Yun Li, and Daniel Schuster.
Evaluating large language models in process mining: Capabilities, benchmarks, evaluation
strategies, and future challenges. arXiv preprint arXiv:2403.06749, 2024.

[36] Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista
Parascandolo. Neural symbolic regression that scales. In International Conference on
Machine Learning, pages 936–945. Pmlr, 2021.

[37] Luigi Bonati, GiovanniMaria Piccini, and Michele Parrinello. Deep learning the slow
modes for rare events sampling. Proceedings of the National Academy of Sciences, 118
(44):e2113533118, 2021. doi: 10.1073/pnas.2113533118. URL https://www.pnas.org/

doi/abs/10.1073/pnas.2113533118.

[38] Taha Boussaid, François Rousset, Vasile-Marian Scuturici, and Marc Clausse. Evaluation
of Graph Neural Networks as Surrogate Model for District Heating Networks Simula-
tion. In 36th International Conference on Efficiency, Cost, Optimization, Simulation and
Environmental Impact of Energy Systems (ECOS 2023), pages 3182–3193, Las Palmas
De Gran Canaria, Spain, June 2023. ECOS 2023. doi: 10.52202/069564-0286. URL
https://hal.science/hal-04228699.

[39] Andrew Boutros, Eriko Nurvitadhi, Rui Ma, Sergey Gribok, Zhipeng Zhao, James C
Hoe, Vaughn Betz, and Martin Langhammer. Beyond peak performance: Comparing the
real performance of ai-optimized fpgas and gpus. In 2020 international conference on
field-programmable technology (ICFPT), pages 10–19. IEEE, 2020.

[40] Gilles Brassard and Peter Hoyer. An exact quantum polynomial-time algorithm for si-
mon’s problem. In Proceedings of the Fifth Israeli Symposium on Theory of Computing
and Systems, pages 12–23. IEEE, 1997.

[41] Randy Brown. Calendar queues: a fast O(1) priority queue implementation for the
simulation event set problem. Communications of the ACM, 31:1220–1227, 1988. ISSN
0001-0782.

[42] Caterina Buizza, César Quilodrán Casas, Philip Nadler, Julian Mack, Stefano Marrone,
Zainab Titus, Clémence Le Cornec, Evelyn Heylen, Tolga Dur, Luis Baca Ruiz, et al. Data
learning: Integrating data assimilation and machine learning. Journal of Computational
Science, 58:101525, 2022.

[43] Chengkun Cai, Xu Zhao, Haoliang Liu, Zhongyu Jiang, Tianfang Zhang, Zongkai Wu,
Jenq-Neng Hwang, and Lei Li. The role of deductive and inductive reasoning in large
language models. arXiv preprint arXiv:2410.02892, 2024.

32



[44] Wentong Cai, Philipp Andelfinger, Luca Bortolussi, Christopher Carothers, Dong Kevin
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Carina Prunkl, Brooks Paige, Olexandr Isayev, Erik Peterson, Peter L McMahon, Jakob
Macke, Kyle Cranmer, Jiaxin Zhang, Haruko Wainwright, Adi Hanuka, Manuela Veloso,
Samuel Assefa, Stephan Zheng, and Avi Pfeffer. Simulation intelligence: Towards a new
generation of scientific methods. arXiv, (2112.03235), December 2021.

[166] Averill M. Law. Statistical analysis of simulation output data: The practical state of
the art. In 2020 Winter Simulation Conference (WSC), pages 1117–1127, 2020. doi:
10.1109/WSC48552.2020.9383993.

[167] Pierre L’Ecuyer, Michel Mandjes, and Bruno Tuffin. Importance Sampling in Rare Event
Simulation, chapter 2, pages 17–38. John Wiley & Sons, Ltd, 2009. ISBN 9780470745403.
doi: https://doi.org/10.1002/9780470745403.ch2. URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/9780470745403.ch2.

[168] Lawrence M Leemis and Stephen K Park. Discrete-Event Simulation: A First Course.
Pearson, Upper Saddle River, NJ, USA, 1 edition, January 2006.

[169] Madlene Leißau and Christoph Laroque. Reverse engineering the future–an automated
backward simulation approach to on-time production in the semiconductor industry. In
2023 Winter Simulation Conference (WSC), pages 2040–2051. IEEE, 2023.

[170] Jun-Xue Leng, Yuan Feng, Wei Huang, Yang Shen, and Zhen-Guo Wang. Variable-fidelity
surrogate model based on transfer learning and its application in multidisciplinary design
optimization of aircraft. Physics of Fluids, 36(1):017131, 01 2024. ISSN 1070-6631. doi:
10.1063/5.0188386. URL https://doi.org/10.1063/5.0188386.

41



[171] Dongrui Li and Jinghui Zhong. Dimensionally aware multi-objective genetic programming
for automatic crowd behavior modeling. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 30(3):1–24, 2020.

[172] Jiachen Li, Chuanbo Hua, Hengbo Ma, Jinkyoo Park, Victoria Dax, and Mykel J Kochen-
derfer. Multi-agent dynamic relational reasoning for social robot navigation. arXiv
preprint arXiv:2401.12275, 2024.

[173] Jian-Yu Li, Zhi-Hui Zhan, Hua Wang, and Jun Zhang. Data-driven evolutionary algo-
rithm with perturbation-based ensemble surrogates. IEEE Transactions on Cybernetics,
51(8):3925–3937, 2020.

[174] Zhongwei Lin, Carl Tropper, Yiping Yao, Robert A Mcdougal, Mohammand Nazrul Ish-
lam Patoary, William W Lytton, and Michael L Hines. Load balancing for multi-threaded
pdes of stochastic reaction-diffusion in neurons. Journal of Simulation, 11(3):267–284,
2017.

[175] Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic,
and Hao Su. Deductive verification of chain-of-thought reasoning. Advances in Neural
Information Processing Systems, 36, 2024.

[176] Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji Zhou, and Yue Zhang. Evaluating
the logical reasoning ability of chatgpt and gpt-4. arXiv preprint arXiv:2304.03439, 2023.

[177] Qi Liu, Yuanqi Du, Fan Feng, Qiwei Ye, and Jie Fu. Structural causal model for molecular
dynamics simulation. In NeurIPS 2022 AI for Science: Progress and Promises.

[178] Tianyi Liu, Yifan Lin, and Enlu Zhou. Bayesian stochastic gradient descent for stochastic
optimization with streaming input data. SIAM Journal on Optimization, 34(1):389–418,
2024.

[179] Xinhu Liu and Philipp Andelfinger. Time warp on the GPU: Design and assessment. In
Proceedings of the 2017 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, SIGSIM-PADS ’17, pages 109–120, New York, NY, USA, May 2017. ACM.
ISBN 9781450344890. doi: 10.1145/3064911.3064912.

[180] Lennart Ljung. Perspectives on system identification. Annual Reviews in Control, 34(1):
1–12, 2010.

[181] Denghui Lu, Han Wang, Mohan Chen, Lin Lin, Roberto Car, E Weinan, Weile Jia, and
Linfeng Zhang. 86 pflops deep potential molecular dynamics simulation of 100 million
atoms with ab initio accuracy. Computer Physics Communications, 259:107624, 2021.

[182] Jiali Luan and Zheng Zhang. Prediction of multidimensional spatial variation data via
bayesian tensor completion. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(2):547–551, 2019.

[183] Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Non-
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Ribeiro, and Thomas B Schön. Deep networks for system identification: a survey. Auto-
matica, 171:111907, 2025.
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[306] Shuo Yang, Bas WA Bögels, Fei Wang, Can Xu, Hongjing Dou, Stephen Mann, Chunhai
Fan, and Tom FA de Greef. Dna as a universal chemical substrate for computing and
data storage. Nature Reviews Chemistry, 8(3):179–194, 2024.

[307] Feng Yao, Yiping Yao, Huangke Chen, Tianlin Li, Menglong Lin, and Xiaoxiong Zhang.
An efficient virtual machine allocation algorithm for parallel and distributed simulation
applications. Concurrency and Computation: Practice and Experience, 31(17):e5237,
2019.

[308] Esin Yavuz, James Turner, and Thomas Nowotny. Genn: a code generation framework
for accelerated brain simulations. Scientific reports, 6(1):18854, 2016.

[309] Zhisheng Ye, Wei Gao, Qinghao Hu, Peng Sun, Xiaolin Wang, Yingwei Luo, Tianwei
Zhang, and Yonggang Wen. Deep learning workload scheduling in gpu datacenters: A
survey. ACM Computing Surveys, 56(6):1–38, 2024.

51
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sampling. The journal of physical chemistry letters, 10(19):5791–5797, 2019.

[320] Jun Zhang, Yao-Kun Lei, Zhen Zhang, Xu Han, Maodong Li, Lijiang Yang, Yi Isaac Yang,
and Yi Qin Gao. Deep reinforcement learning of transition states. Physical Chemistry
Chemical Physics, 23(11):6888–6895, 2021.

[321] Junzi Zhang, Jongho Kim, Brendan O’Donoghue, and Stephen Boyd. Sample efficient
reinforcement learning with reinforce. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 10887–10895, 2021.

[322] Linfeng Zhang, De-Ye Lin, Han Wang, Roberto Car, and Weinan E. Active learning
of uniformly accurate interatomic potentials for materials simulation. Physical Review
Materials, 3(2):023804, 2019.

52



[323] Yuchang Zhang, Ruibin Bai, Rong Qu, Chaofan Tu, and Jiahuan Jin. A deep reinforce-
ment learning based hyper-heuristic for combinatorial optimisation with uncertainties.
European Journal of Operational Research, 300(2):418–427, 2022.

[324] Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowl-
edge for large-scale task planning. Advances in Neural Information Processing Systems,
36, 2024.

[325] Jinghui Zhong, Wentong Cai, Michael Lees, and Linbo Luo. Automatic model construc-
tion for the behavior of human crowds. Applied Soft Computing, 56:368–378, 2017.

[326] Jinghui Zhong, Dongrui Li, Zhixing Huang, Chengyu Lu, and Wentong Cai. Data-driven
crowd modeling techniques: A survey. ACM Trans. Model. Comput. Simul., 32(1), Jan-
uary 2022. ISSN 1049-3301. doi: 10.1145/3481299. URL https://doi.org/10.1145/

3481299.

[327] Changcong Zhou, Hanlin Zhang, Qi Chang, Xiaokang Song, and Chen Li. An adaptive
ensemble of surrogate models based on hybrid measure for reliability analysis. Structural
and Multidisciplinary Optimization, 65(1):16, 2022.

[328] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris
Chan, and Jimmy Ba. Large language models are human-level prompt engineers. arXiv
preprint arXiv:2211.01910, 2022.

[329] Shengyu Zhu, Ignavier Ng, and Zhitang Chen. Causal discovery with reinforcement learn-
ing. arXiv preprint arXiv:1906.04477, 2019.

53


