
Sampling Policies for Near-Optimal Device Choice
in Parallel Simulations on CPU/GPU Platforms

Philipp Andelfinger∗, Alessandro Pellegrini†, and Romolo Marotta†
∗University of Rostock, Germany

†Tor Vergata University of Rome, Italy

Abstract—Heterogeneous hardware platforms comprised of
CPUs, GPUs, and other accelerators offer the opportunity to
choose the best-suited device for executing a given scientific
simulation in order to minimize execution time and energy
consumption. To this end, the recently proposed “Follow the
Leader” approach dynamically selects a suitable device based on
runtime performance measurements during speculative discrete-
event simulations. A currently active “leader” device is periodi-
cally challenged by a “follower” device in order to negotiate the
new leader. The optimality of the device choices and the associ-
ated overhead depends critically on the challenge frequency and
timing. Here, we explore policies to schedule challenges with the
goal of attaining Pareto-optimal combinations of execution time
and energy consumption. Several heuristics are first evaluated in
an abstract fashion using a “meta-simulation” by mimicking the
progress and energy consumption of an idealized co-execution.
In this setting, we optimize the heuristics’ tuning parameters to
assess their relative merits in near-optimal configurations when
compared to challenge timings based on perfect knowledge. We
find that under challenging stochastic workloads based on a
class of mean-reverting random walks, the best heuristics can
closely approximate the execution time and energy consumption
achievable under an optimal device choice. Empirical support
for this observation is given by measurements of a CPU/GPU
co-execution of the Time Warp algorithm on physical hardware.

Index Terms—GPU-based simulation, Time Warp, heteroge-
neous hardware, discrete-event simulation

I. INTRODUCTION

Parallel Discrete Event Simulation (PDES) [1] is a powerful
tool for what-if analysis and studying complex systems across
fields like telecommunications, transportation, healthcare, and
military applications. These simulations are becoming increas-
ingly complex and require significant computational power.
Modern heterogeneous exascale systems [2], which include a
mix of CPUs, GPUs, and other accelerators, are well-suited
for this task. However, running PDES on such systems is
challenging because different hardware classes exhibit varying
performance and energy profiles based on the workload [3]. As
model dynamics can change frequently, determining the opti-
mal deployment at runtime is difficult, necessitating adaptive
strategies for efficient and energy-effective simulations.

Recently, the “Follow the Leader” (FTL) approach [4] has
been proposed for dynamically selecting the optimal device
based on real-time performance measurements during spec-
ulative discrete-event simulations based on the Time Warp
synchronization protocol [5]. The approach involves period-
ically challenging the currently active “leader” device with

Virtual time
De

vi
ce

 p
er

fo
rm

an
ce

CPU GPU Faster device

Fig. 1: The performance of different devices varies over time
with the workload dynamics. Our goal is to heuristically
choose appropriate times to collect performance observa-
tions (×) in order to select the fastest device while minimizing
cost. For instance, the third observation in the figure does not
lead to a device change and should thus be omitted.

a “follower” device to negotiate a potential new leader. The
effectiveness and overhead of this method depend heavily on
the frequency and timing of these challenges. This runtime
scheduling problem is characterized by binary decisions (also
known as “bang-bang control” [6]), such as choosing between
running the model for a certain time window [tV T , t

′
V T] on

either CPUs or a GPU.
Our goal in this paper is to optimize the scheduling of

observations (i.e., running a challenge), specifically exploring
various sampling policies that can guide these decisions. The
core problem we address involves two unknown performance
trajectories, f(tV T) and g(tV T), one associated with the
execution of the model on CPUs, the other on GPU. At
specific times tV T , we can observe these trajectories, albeit
at a certain cost. Our goal is to approximate the function
h(tV T) = max(f(tV T), g(tV T)) over the interval [tV T , t

′
V T]

by optimally selecting the times to observe the function values.
This process is summarized in Figure 1.

We focus on developing and evaluating policies for schedul-
ing these challenges to achieve Pareto-optimal combinations of
execution time and energy consumption. We employ a “meta-
simulation” framework based on [7] that abstractly represents
the co-execution of simulations on CPUs and GPUs. This
setup allows us to optimize the tuning parameters of various
heuristics and compare their performance against challenge

timings derived from perfect knowledge.
To this end, we systematically evaluate different sampling

policies, providing insights into their efficacy under stochas-
tic workloads that mimic real-world scenarios. The results
help refine strategies for device selection in heterogeneous
platforms, ultimately enhancing both performance and energy
efficiency in parallel simulations. We validate the results
obtained through the meta-simulation framework by exercising
our policies on actual heterogeneous hardware.

The remainder of this paper is structured as follows. Related
work is discussed in Section II. The heuristics considered to
determine the best-suited executed hardware are presented in
Section III. Section IV discusses the study conducted using the
meta-simulation methodology. Results from the experimental
assessment are reported in Section V.

II. RELATED WORK

The effects of simulation models’ varying workloads on
general-purpose runtime environments have led the research
community to dedicate great care to studying self-optimization
policies that can improve performance and energy efficiency,
although only a few have explicitly considered the underlying
availability of heterogeneous computing architectures. Indeed,
while generic DES engines running on coprocessors (e.g.,
GPU or FPGA) have appeared in the literature (see, e.g., [8]–
[11]), the first attempts to optimize the simulation execution on
heterogeneous systems are very recent [4], [12], [13], although
only the work in [4] has considered generic DES systems.

In speculative simulation, particularly based on the Time
Warp synchronization protocol [5], many proposals have tried
to optimize runtime control parameters to reduce the mem-
ory footprint and housekeeping costs, based on explicit cost
models [14]–[19], on temporal measurements [20]–[22], on
heuristics [23]–[25] or on machine-learning approaches [26]–
[29], sometimes also considering energy efficiency [30]. In
our work, as we assume that the workload dynamics are
unknown a priori and highly variable and that individual
simulation runs can be brief, there is only limited scope for
collecting enough observations to train a machine learning
model, e.g., by reinforcement learning. Instead, we compare
a number of heuristic policies that can be parameterized for
given workloads.

Much effort has been dedicated to identifying the best-suited
accelerator to run a certain workload in the general landscape
of heterogeneous high-performance computing (HPC). Sev-
eral performance models have been proposed to estimate the
execution time of kernels on CUDA GPUs [31]–[33], also
using machine-learning approaches [34]–[36] or considering
program skeletons [37]. These approaches are specific to some
specific accelerator or program organization. Some approaches
also target particular applications, such as iterative stencil
loops [38] or sparse matrices [39]. Other models are tailored to
help developers optimize their code once performance bottle-
necks have been identified [40]–[43]. Energy efficiency when
selecting one particular family of accelerators has also been

studied through models to aid in the identification of the best-
suited HPC setup [44]–[46]. Unlike these works, we select the
best-suited accelerator for a certain execution phase based on
observing the model’s behavior in a certain time window. This
strategy avoids the simplifications introduced by modeling
approaches. Conversely, we rely on models and heuristics to
determine the best-suited instant when to run a challenge to
limit performance impairment and energy wastage.

Our proposal to optimize execution on heterogeneous archi-
tectures is reminiscent of approaches for simulation algorithm
selection [47], [48], or the more general n-version program-
ming approach [49], [50] that leverages multiple versions of
the same program to improve non-functional properties such
as fault tolerance or execution timeliness. The main difference
with our approach is that the different versions of the same
model that we consider exercise different hardware instances
in ways that are hard to predict due to the inherent architectural
difference and because we do not assume the stability of the
model. Therefore, we adopt explicit challenges to determine
the best-suited architecture for execution, coupled with black-
box heuristics to reduce the impact of such challenges on the
overall performance and energy footprint.

Our approach also shares some objectives with co-
simulation techniques [51], where the integrated simulation
of a coupled system can be accomplished by combining the
simulations of its components. In particular, we could consider
the different instances of the simulation models executed on
CPUs and GPUs as independent components that must be
periodically synchronized (i.e., to support a correct execution
of a challenge and to resume the simulation on the selected
leader). Several synchronization methods have been proposed
in the literature for this goal (see, e.g., [52], [53]). The High-
Level Architecture (HLA) standard [54] also has dedicated
significant space to this problem. Nevertheless, our main focus
is on execution performance and energy efficiency rather than
on interoperability, therefore our timeliness requirements are
much more stringent.

Having multiple instances of the same simulation model
running at the same time recalls the concept of simulation
cloning [55]. This method dynamically initiates multiple sim-
ulation instances at decision points within a simulation, facil-
itating the concurrent exploration of different execution paths.
By sharing common computation outcomes, cloning enables
a more thorough investigation of what-if scenarios. However,
our approach differs by focusing on a single simulation trajec-
tory while utilizing multiple hardware devices. We also share
computation results among instances, but since we concentrate
on a single trajectory, we meticulously synchronize the state
and event queues among the replicas to maintain consistent
execution.

In the simulation field, various performance prediction ap-
proaches similar to our meta-simulation have been proposed.
Critical path analysis [56] models the parallelism of a simu-
lation model based on inter-event dependencies to highlight
how parallel execution should be, although irrespective of
the hardware used. This is overcome in [57], [58], where

descriptive knowledge of the hardware or results from micro-
benchmarking are considered. Characteristics of the executed
model are also taken into account in [59], where both the
characteristics of the model and the hardware environment
are taken into account, although focusing on network simula-
tions. In our work, a time-stepped meta-simulation generates
predictions not just of execution times, but also of energy
consumption.

III. SAMPLING HEURISTICS

In the following, we describe four heuristic for scheduling
challenges throughout simulation runs, each associated with
one or more tuning parameters. The heuristics are intended
to be applicable without prior knowledge of the workload
and without requiring a learning phase. Hence, the scheduling
decisions directly rely on events and variables that can be
easily observed at runtime.

A. Fixed Period

This baseline heuristic used in our previous work [4]
schedules challenges at a constant period d ∈ R+ in virtual
time, with d being a tunable parameter.

B. Additive Increase, Multiplicative Decrease (AIMD)

Inspired by TCP congestion control [60], the rationale
behind this heuristic is to gradually extend the interval between
challenges as long as no change in the leader occurs. When a
new leader is chosen, the interval is sharply reduced, reflecting
the assumption that further imminent leader changes are likely
given the recent change in relative performance among the
devices. On a challenge i, the delay di+1 in wall-clock time
to the next challenge is determined by

di+1 =

{
di + a, if a leader change occurred
bdi, else.

Here, a ∈ R+ and b ∈ (0, 1] are tuning parameters
representing the additive or multiplicative change at each
challenge.

C. Energy Budget

This heuristic focuses on the benefit in energy consumption
by running on the respective fastest device. New challenges
are scheduled with a delay that balances the cost of the
new challenge with the estimated energy savings through the
current challenge.

We make the simplifying assumption that the energy con-
sumption of the devices per second wall-clock time is approx-
imately constant and roughly the same between the devices.
The former holds approximately for the devices considered
in our empirical evaluation of Section V, whereas the latter
holds approximately as a consequence of the full hardware
utilization produced by the speculative execution via Time
Warp. Under these assumptions, a relative reduction in energy
consumption is equivalent to the same relative reduction in
wall-clock time.

In order to determine a new challenge delay di+1, the
heuristic postulates di+1rWT

!
= cWT, where rWT is the relative

reduction in wall-clock time and cWT is the cost in units wall-
clock time of a challenge. The latter represents the number
of units wall-clock time running on a single device that
are equivalent in energy use to a challenge. This equation
leads to delays between challenges that correspond to the
energy savings by a correct device choice. Adding a tuning
parameter a ∈ R+, the new challenge delay is calculated as
di+1 = acWT/rWT

D. Monitor Leader

Here, we rely on the fact that the leader’s current perfor-
mance can be monitored continuously at negligible cost. This
allows for a scheduling policy based on the hypothesis that
changes in the leader’s performance are highly correlated with
changes in the relative performance of the devices. If this
hypothesis holds, minor changes in the leader’s performance
indicate that the leader is unlikely to be outperformed by the
follower device. Given the leader’s performance pi during the
previous challenge and its currently observed performance p′,
an immediate challenge is triggered if the relative change in
performance exceeds a threshold a ∈ R+: |p′ − pi| > api. A
minimum delay dmin in wall-clock time between challenges is
used as hysteresis to avoid rapidly repeated challenges during
periods of highly varying workload. The threshold a and the
minimum delay dmin are tuning parameters.

IV. METHODOLOGY

Our goal is to understand the degree to which the sampling
heuristics described in the previous section are able to approx-
imate an optimal placement of sampling points that would lead
to Pareto-minimal execution time and energy consumption.
To identify the fundamental behavior of the heuristics inde-
pendently of implementation details and hardware specifics,
we evaluate the heuristics in a form of “meta-simulation”
that imitates the behavior of the CPU/GPU co-execution over
the course of a simulation run. This experiment setup allows
us to freely exercise the heuristics under arbitrary synthetic
workloads and to optimize the heuristics’ parameters in a
controlled setting. Furthermore, we can identify near-optimal
sampling points based on full knowledge of specific workloads
to better understand the optimality gap of the heuristics. In
the following, we describe the meta-simulation procedure, the
synthetic workload generation, and the optimization approach.

A. Meta-simulation Procedure

The meta-simulation abstractly represents the progress and
energy consumption of the CPU/GPU co-execution under a
given workload and sampling heuristic. In the meta-simulation,
two notions of time must be distinguished: virtual time (VT)
represents the progress in processing FTL’s workload, whereas
wall-clock time (WT) models the wall-clock execution time.
For simplicity, the meta-simulation advances time using a
fixed step size, while the implementation of FTL targeting

physical hardware follows the discrete-event paradigm over a
continuous time base.

The key consideration for the device choice in FTL is the
performance of the two devices, which we define here as a
ratio:

rdevice(tWT) :=
tVT(tWT)− tVT(tWT −∆tWT)

∆tWT
.

This ratio, which we will refer to as a device’s momentary
“speed“, is the progress in virtual time over a span ∆tWT
in wall-clock time. Importantly, the meta-simulation allows
us to regard the speed as an independent variable, i.e., we
can directly generate speed trajectories for the devices and
observe the effects on execution time and energy consumption
depending on the chosen sampling heuristic. This is in contrast
to our empirical experiments, where the given devices’ speeds
are dependent variables that can be varied only indirectly by
adjusting the workload. The decisive factor for a device’s
momentary speed are the characteristics of the current work-
load, i.e., the dynamics of the simulation model at the current
point in virtual time. Hence, we represent speed trajectories
as sequences of speed values over discretized virtual time.

Algorithm 1 shows pseudo code of the meta-simulation.
Its inputs are the termination point in virtual time, a set of
device names, their speed trajectories over virtual time, and a
function representing the sampling heuristic with associated
tuning parameters. The meta-simulation loop advances the
wall-clock execution time until the desired virtual time has
been reached by iteratively incrementing the current virtual
time by the current leader devices’ speed, while recording the
energy consumption associated with this process. Whenever a
challenge is carried out, the energy consumption includes the
base overhead of a challenge and the energy required to run
all devices in parallel for the current step in wall-clock time.
A new leader is chosen as the current fastest device and the
progress in virtual time is throttled to account for the challenge
overhead in terms of execution time. Finally, the wall-clock
time of the next challenge is determined by supplying the
configured sampling heuristic with its required arguments (see
Section III). The return values of the meta-simulation are
the overall wall-clock execution time and energy consumption
required to satisfy the termination criterion.

B. Performance Trajectory Generation
The effectiveness of the sampling heuristics can only be

evaluated with reference to device speed trajectories corre-
sponding to the device performance under a workload. To
emphasize the differences between the heuristics, we focus on
speed trajectories that render the device selection particularly
challenging. Hence, we aim to generate trajectories that are
non-linear and stochastic, and in which the device speeds
at a given point in virtual time are uncorrelated. The latter
assumption leads to particularly challenging trajectories since
on physical hardware, significant changes in workload dynam-
ics are likely to affect all devices’ speeds either positively or
negatively. An additional requirement for the FTL approach to
be applied gainfully is that the optimal leader, i.e., the fastest
device, is likely to change over the course of a simulation run.

Algorithm 1 Pseudo code of the meta-simulation used to
abstractly evaluate and optimize the sampling heuristics.

Require: T : end time; D: devices; S: device speeds over
time; Ed: energy per step for each device; Ec: challenge
energy cost; C: challenge speed coefficient; H: heuristic
for next challenge delay; P : heuristic parameters

1: wt← 0 # wall-clock time
2: wtchallenge ← 0 # next challenge time
3: e← 0 # energy consumption
4: t← 0 # virtual time
5: while t < T do
6: if wtchallenge = wt then
7: e← e+ Ec +

∑
d∈D Ed[d]

8: leader ← argmaxd∈D S[d][t]
9: t← t+ S[leader] · C

10: wtchallenge ← wt+H(P)
11: else
12: e← e+ Ed[leader]
13: t← t+ S[leader]
14: wt← wt+ 1
15: return wt, e

Given these desired properties, we generate the speed trajec-
tories based on random walks. Each trajectory is an Ornstein-
Uhlenbeck process [61], which is a mean-reverting random
walk that allows us to generate uncorrelated trajectories with
high variance, without the tendency for early and permanent
divergence of simpler, e.g., plain Gaussian, random walks. By
bounding the process to [0.1, 1] to generate relative speeds
within a factor of 10, setting the mean to 0.5, and varying
the process’ variance, we obtain speed trajectories as shown
in Figure 2.

C. Optimization Approach

We intend to compare the heuristics when adjusted to
the general characteristics of a workload, i.e., under near-
optimal configurations of their tuning parameters. This is
achieved by optimizing the heuristics’ parameters over large
sets of randomly generated trajectories. Although the heuristics
are configured with only one or two parameters, substantial
computational demands are created by the large number of
trajectories on which the heuristics must be exercised to
reliably identify well-performing parameter values.

Given that the meta-simulation returns both the wall-clock
execution time and the energy consumption, we are faced
with a multi-objective optimization problem. Here, we vary a
weight coefficient in order to adjust the importance put on min-
imizing either execution time or energy. We normalize these
values to represent percentage overheads over the minimal
time or energy achieved by a hypothetical optimal run that
always executes on the faster device without any challenges.

As an additional point of reference in between the oracle
result and the sampling heuristics, we approximate the time
and energy achievable by an optimal sampling heuristic that

0.1

1.0

10.0

R
el

at
iv

e
d

ev
ic

e
sp

ee
d

Workload volatility 0.25

0.1

1.0

10.0

R
el

at
iv

e
d

ev
ic

e
sp

ee
d

Workload volatility 0.5

0 200 400 600 800 1000

Virtual time

0.1

1.0

10.0

R
el

at
iv

e
d

ev
ic

e
sp

ee
d

Workload volatility 1

Fig. 2: Example trajectories of the relative device speed over
virtual time, varying the workload’s volatility by adjusting the
standard deviation of the underlying mean-reverting random
walks. The plots show three trajectories per volatility level,
with the highest level generating frequent and aggressive
changes in the relative device speed.

carries out challenges at the optimal points in time. We deter-
mine these values by solving a high-dimensional optimization
problem for each set of speed trajectories, with one binary
decision variable for each wall-clock time step representing the
decision whether to carry out a challenge. In our experiments
described in Section V, this “brute force” approach leads to
an optimization problem with 2 000-dimensional input.

We tackle these optimization problems using DiscoGrad [7],
a publicly available1 framework for gradient estimation

1https://www.github.com/DiscoGrad/DiscoGrad

across programs with conditional branches. DiscoGrad applies
source-to-source transformations and several forms of smooth-
ing in order to efficiently compute gradients in the presence of
function discontinuities and stochasticity. By implementing the
meta-simulation as a DiscoGrad program in C++, we benefit
from the capability of gradient descent to swiftly identify local
optima of high-dimensional objective functions.

V. EVALUATION

The goal of our evaluation is to assess the execution time
and energy consumption achievable via the different heuristics.
We first consider the results when executing the heuristics
abstractly and with optimized tuning parameters in our meta-
simulation before assessing how the results for the best-
performing heuristics carry over to physical hardware.

A. Optimized Heuristics

The meta-simulation requires several parameters reflecting
assumptions about the modeled Time Warp simulation and
hardware platform (cf. Section IV-A). Since we are only in-
terested in relative results between the heuristics and idealized
runs, energy and time are represented as unit-less values.
For our experiments, we set the energy consumption per unit
wall-clock time to 1, the energy consumption of a challenge
to 2, and the coefficient slowing down the execution during
challenges to 0.9.

For optimizing the heuristics’ tuning parameters, we de-
fine an objective function αcenergy + (1 − α)cWT that uses
an energy coefficient α to weight the percentage over-
heads in energy and time over an oracle result in which
the faster device is chosen without challenge overheads.
In order to explore the Pareto frontier of trade-offs be-
tween execution time and energy, we optimized the heuris-
tics’ tuning parameters for each energy coefficient level
in {0, 0.03125, 0.0625, 0.125, 0.1875, 0.25, 0.5, 0.75, 1}. The
workload volatility as configured via the dynamics of the
device speeds was set to the levels 0.25, 0.5, and 1 as in
Figure 2. The heuristics’ parameters were optimized over
batches of 1000 random workloads at a time, whereas the
“brute force” optimization to identify near-optimal challenge
timings was executed on 100 separate fixed workloads for each
combination of values for the workload volatility and energy
coefficient.

We first assess whether the parameters identified via op-
timization, which are shown in Table I, align with our ex-
pectations (cf. Section III for the parameters’ interpretation).
In all heuristics, choosing larger parameter values increases
the intervals between challenges. We observe that the chosen
values consistently follow the expected patterns. With higher
energy weight coefficients, longer periods between challenges
at the cost of increase execution times can be tolerated.
However, even with the weight coefficient set to 1, no extreme
increases in in the parameter values can observed, since it is
still necessary to take the execution time into account due
to the devices’ energy consumption over wall-clock time.
Conversely, with higher workload volatility, more frequent

TABLE I: Optimized tuning parameters for the different
heuristics (cf. Section III). High energy weights generate pa-
rameter settings that lead to long intervals between challenges.

Energy weight
Heuristic 0 0.125 0.25 0.5 1

Fixed Period 15.1 37.9 55.4 81.9 98.2
AIMD 16.1; 0.2 42.0; 0.9 66.3; 1.0 90.5; 0.4 100.0; 0.9

Energy Budget 0.7 2.7 3.1 8.4 10.0
Monitor Leader 0.1; 7.8 0.1; 18.7 0.2; 27.4 0.2; 39.2 0.2; 54.8

(a) Workload volatility 0.25

Energy weight
Heuristic 0 0.125 0.25 0.5 1

Fixed Period 9.4 22.4 31.6 46.8 71.7
AIMD 9.7; 0.0 24.6; 0.9 36.2; 0.8 53.5; 1.0 85.2; 0.1

Energy Budget 0.8 1.3 1.9 3.7 6.5
Monitor Leader 0.1; 4.2 0.2; 10.8 0.2; 11.3 0.3; 19.9 0.3; 28.2

(b) Workload volatility 0.5

Energy weight
Heuristic 0 0.125 0.25 0.5 1

Fixed Period 5.7 12.5 17.2 25.0 38.1
AIMD 5.8; 0.1 13.3; 0.5 19.9; 0.8 30.8; 0.9 46.0; 1.0

Energy Budget 0.9 1.9 2.3 2.6 4.2
Monitor Leader 0.2; 0.0 0.3; 0.4 0.3; 0.1 0.4; 9.1 0.5; 15.6

(c) Workload volatility 1

challenges, i.e., lower parameter values, are needed to react
to the frequent and abrupt changes in device speeds.

Figure 3 shows the trade-offs between energy consumption
and execution time achieved by the different heuristics. There
are two points of reference: firstly, the axes show the percent-
age overheads over hypothetical oracle runs in which the faster
device is always chosen without incurring the cost of chal-
lenges. Secondly, “Optimized Sampling” represents the results
of scheduling challenges based on “brute-force” optimization
across known device speed trajectories. Compared to these
idealized results, the heuristics incur the cost of challenges
and operate without prior knowledge of the device speeds.

At a high level, we see that with higher workload volatility,
the difference in results among the sampling policies be-
comes vastly more pronounced, whereas their ranking remains
the same. With workload volatility 1, achieving low energy
consumption becomes extremely challenging, as indicated by
the overhead of about 10% incurred even with Optimized
Sampling. The Energy Budget heuristic is vastly outperformed
by all others, and its Pareto frontier does not show the clear
pattern visible with the other heuristics. Although Table I
showed that its parameter follows the changes in the energy
weight coefficient, the effect of this adjustment seems to be
weak. Interestingly, the simple Fixed Period heuristic slightly
outperforms AIMD, indicating that given our workloads, the
time since the last leader change is not a sufficiently strong
predictor of the next change for AIMD’s rationale to apply.
The Monitor Leader heuristic clearly dominates all others. We
attribute this to its use of the leader’s changes in speed, which
directly affects the relative device speed. Encouragingly, the
overhead of this heuristic is only a few percentage points above
the Optimized Sampling result.

5 10 15 20 25

Energy overhead [%]

0

10

20

W
al

l
ti

m
e

ov
er

h
ea

d
[%

]

Workload volatility 0.25

Energy Budget

AIMD

Fixed Period

Monitor Leader

Optimized Sampling

10 20 30 40

Energy overhead [%]

0

10

20

W
al

l
ti

m
e

ov
er

h
ea

d
[%

]

Workload volatility 0.5

10 20 30 40 50 60 70

Energy overhead [%]

0

10

20

30

W
al

l
ti

m
e

ov
er

h
ea

d
[%

]
Workload volatility 1

Fig. 3: wall-clock time/energy overheads of the different
heuristics in percent over an oracle result without sampling
and compared to optimized sampling points based on perfect
knowledge.

B. Empirical Results

We now turn to experimental results using an implemen-
tation of FTL running on physical hardware based on the
CPU-based ROme OpTimistic Simulator (ROOT-Sim) [62]
and GPUTW [63]. ROOT-Sim is a CPU implementation of the
Time Warp [64] synchronization protocol that supports self-
optimized state saving for dynamically allocated memory [18]
and load balancing [65]. GPUTW is a GPU implementation of
Time Warp [64] and the conservative YAWNS [66] algorithm
written in NVIDIA CUDA. Each GPU thread handles events
pertaining to a number of simulation objects and holds its
own event, state, and antimessage lists. Objects are aggregated
dynamically to balance parallelism with the cost of event-list
operations.

The benchmark model used in our experiments is a variant

12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5
Energy [kJ]

80

90

W
al

l t
im

e
[s

]
Workload volatility 0.25
Fixed Period
Monitor Leader
AIMD

12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5
Energy [kJ]

80

90

W
al

l t
im

e
[s

]

Workload volatility 0.5

12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5
Energy [kJ]

80

90

W
al

l t
im

e
[s

]

Workload volatility 1

Fig. 4: wall-clock time and energy consumption of the differ-
ent heuristics for different workload volatility values.

of the traditional PHold model [67]. In PHold, each involves
a configurable number of no-operations to imitate processing
time after which a new event is scheduled, with the destination
object and the delay drawn from probability distributions. In
our experiments, the model is extended so that the amount
of parallelism in the model can be adjusted dynamically via
the percentage of simulation objects that can be targeted
by newly-injected events. The difference in the CPU and
GPU simulators’ performance depending on the degree of
parallelism allows us to generate device speed trajectories in
line with the random walks described in Section IV-B.

Given that our empirical results showed a strong corre-
lation between energy consumption and execution time, we
configured each heuristic with the parameters obtained by the
meta-simulations with the weight coefficient set to 0. Since the
Energy Budget heuristic was vastly outperformed by the others
in the meta-simulations, we exclude it in these experiments.

Our measurements were conducted on a machine equipped
with an Intel i7-13700F processor, 32GB RAM, and an
NVIDIA RTX 4070 Super, running Debian Ubuntu 24.04. The
energy measurements are based on the CPU’s and GPU’s own
estimates.

Figure 4 shows the energy consumption and execution
times obtained by running 40 different simulation traces for
each volatility value and evaluated heuristic. Our results align
with those from the meta-simulations. In particular, AIMD
consumes both more energy and time than the other heuristics,
which both complete the simulations using 12.2% shorter wall-
clock time. As in the meta-simulations, the Monitor Leader
heuristic dominates the others, with 15% energy savings over
Fixed Period.

VI. CONCLUSIONS

The experiments with optimized parameters of the sampling
heuristics established a consistent ranking across all levels
of volatility in the workload. We observed that scheduling
challenges based on changes in the leader device’s speed
clearly outperformed the other heuristics both in energy con-
sumption and execution time. Remarkably, these results and
the parameter choices identified via meta-simulation largely
carried over to measurements on physical hardware.

The main limitation of our work lies in the dependence of
the results on the chosen workload. Our experiments relied
on synthetic workloads generated by mean-reverting random
walks. While the results were consistent across instances
of these workloads, experimentation across a broader set of
representative workloads is needed to assess the robustness of
the different heuristics. To enable the direct applicability to
practical use cases, we intend to explore dynamic adjustments
of the heuristic parameters to given hardware platforms and
workloads.

ACKNOWLEDGMENT

This paper has been partially supported by the Italian MUR
PRIN 2022 Project: Domain (Grant #2022TSYYKJ) financed
by NextGenEu and partially by the Spoke 1 “FutureHPC
& BigData” of the Italian Research Center on High Perfor-
mance Computing, Big Data and Quantum Computing (ICSC)
funded by MUR Missione 4 Componente 2 Investimento 1.4:
Potenziamento strutture di ricerca e creazione di “campioni
nazionali” di R&S (M4C2-19) - Next Generation EU (NGEU).
Philipp Andelfinger is supported by Deutsche Forschungsge-
meinschaft (DFG), German Research Foundation, under Grant
497901036.

REFERENCES

[1] R. M. Fujimoto, “Parallel discrete event simulation,” Communications
of the ACM, vol. 33, no. 10, pp. 30–53, Oct. 1990.

[2] D. Schneider, “The exascale era is upon us: The frontier supercomputer
may be the first to reach 1,000,000,000,000,000,000 operations per
second,” IEEE Spectrum, vol. 59, no. 1, pp. 34–35, Jan. 2022.

[3] U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso, “A survey of
performance modeling and simulation techniques for accelerator-based
computing,” IEEE transactions on parallel and distributed systems: a
publication of the IEEE Computer Society, vol. 26, no. 1, pp. 272–281,
Jan. 2015.

[4] R. Marotta, A. Pellegrini, and P. Andelfinger, “Follow the leader:
Alternating CPU/GPU computations in PDES,” in Proceedings of the
2024 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, ser. SIGSIM-PADS ’24. Atlanta, GA, USA: ACM, Jun.
2024.

[5] D. R. Jefferson, “Virtual time,” ACM Transactions on Programming
Languages and Systems, vol. 7, no. 3, pp. 404–425, Jul. 1985.

[6] R. Bellman, I. Glicksberg, and O. Gross, “On the “bang-bang” control
problem,” Quarterly of applied mathematics, vol. 14, no. 1, pp. 11–18,
1956.

[7] J. N. Kreikemeyer and P. Andelfinger, “Smoothing Methods for Au-
tomatic Differentiation Across Conditional Branches,” IEEE Access,
vol. 11, pp. 143 190–143 211, 2023.

[8] K. S. Perumalla, “Discrete-event execution alternatives on general
purpose graphical processing units (GPGPUs),” in 20th Workshop on
Principles of Advanced and Distributed Simulation (PADS’06). IEEE,
2006.

[9] H. Park and P. A. Fishwick, “A GPU-based application framework
supporting fast discrete-event simulation,” Simulation, vol. 86, no. 10,
pp. 613–628, Oct. 2010.

[10] X. Liu and P. Andelfinger, “Time warp on the GPU: Design and
assessment,” in Proceedings of the 2017 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, ser. SIGSIM-PADS ’17.
New York, NY, USA: ACM, May 2017, pp. 109–120.

[11] S. Rahman, N. Abu-Ghazaleh, and W. Najjar, “PDES-a: Accelerators
for parallel discrete event simulation implemented on FPGAs,” ACM
transactions on modeling and computer simulation: a publication of the
Association for Computing Machinery, vol. 29, no. 2, pp. 1–25, Apr.
2019.

[12] J. Xiao, P. Andelfinger, W. Cai, P. Richmond, A. Knoll, and D. Eckhoff,
“OpenABLext: An automatic code generation framework for agent-
based simulations on CPU-GPU-FPGA heterogeneous platforms,” Con-
currency and computation: practice & experience, vol. 32, no. 21, Nov.
2020.

[13] A. Zhu, Q. Chang, J. Xu, and W. Ge, “A dynamic load balancing
algorithm for CFD–DEM simulation with CPU–GPU heterogeneous
computing,” Powder technology, vol. 428, no. 118782, p. 118782, Oct.
2023.

[14] L. R. G. Auriche, F. Quaglia, and B. Ciciani, “Run-time selection of the
checkpoint interval in time warp based simulations,” Simulation Practice
and Theory, vol. 6, pp. 461–478, 1998.

[15] Y.-B. Lin, B. R. Preiss, W. M. Loucks, and E. D. Lazowska, “Selecting
the checkpoint interval in time warp simulation,” ACM SIGSIM Simu-
lation Digest, vol. 23, no. 1, pp. 3–10, Jul. 1993.

[16] A. C. Palaniswamy and P. A. Wilsey, “An analytical comparison of
periodic checkpointing and incremental state saving,” in Proceedings of
the 7th workshop on Parallel and Distributed Simulation, ser. PADS ’93.
New York, New York, USA: ACM Press, 1993, pp. 127–134.

[17] H. M. Soliman and A. S. Elmaghraby, “An analytical model for hybrid
checkpointing in time warp distributed simulation,” IEEE Transactions
on Parallel and Distributed Systems, vol. 9, no. 10, pp. 947–951, Oct.
1998.

[18] A. Pellegrini, R. Vitali, and F. Quaglia, “Autonomic state management
for optimistic simulation platforms,” IEEE Transactions on Parallel and
Distributed Systems, vol. 26, pp. 1560–1569, 2015.

[19] ——, “Di-DyMeLoR: Logging only dirty chunks for efficient man-
agement of dynamic memory based optimistic simulation objects,” in
Proceedings of the 23rd Workshop on Principles of Advanced and
Distributed Simulation, ser. PADS ’09. Piscataway, NJ, USA: IEEE,
Jun. 2009, pp. 45–53.

[20] R. Rönngren and R. Ayani, “Adaptive checkpointing in time warp,” in
Proceedings of the 8th Workshop on Parallel and Distributed Simulation,
ser. PADS ’94. New York, NY, USA: ACM, 1994, pp. 110–117.

[21] S. Sköld and R. Rönngren, “Event sensitive state saving in time
warp parallel discrete event simulations,” in Proceedings of the 28th
conference on Winter simulation, ser. WSC ’96. New York, New York,
USA: ACM Press, 1996, pp. 653–660.

[22] F. Quaglia, “Event history based sparse state saving in time warp,”
in Proceedings of the twelfth workshop on Parallel and distributed
simulation, ser. PADS ’98. Piscataway, NJ, USA: IEEE Computer
Society, 1998, pp. 72–79.

[23] D. West and K. Panesar, “Automatic incremental state saving,” in Pro-
ceedings of the 10th Workshop on Parallel and Distributed Simulation,
ser. PADS. Piscataway, NJ, USA: IEEE, May 1996, pp. 78–85.

[24] F. Quaglia, “A cost model for selecting checkpoint positions in time warp
parallel simulation,” IEEE Transactions on Parallel and Distributed
Systems, vol. 12, pp. 346–362, 2001.

[25] F. Montesano, R. Marotta, and F. Quaglia, “Spatial/temporal locality-
based load-sharing in speculative discrete event simulation on multi-core

machines,” in Proceedings of the 2022 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, ser. SIGSIM-PADS ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
81–92. [Online]. Available: https://doi.org/10.1145/3518997.3531026

[26] J. Wang and C. Tropper, “Optimizing time warp simulation with rein-
forcement learning techniques,” in 2007 Winter Simulation Conference.
IEEE, Dec. 2007.

[27] ——, “Selecting GVT interval for time-warp-based distributed simula-
tion using reinforcement learning technique,” in Proceedings of the 2009
Spring Simulation Multiconference, ser. SpringSim ’09. San Diego, CA,
USA: Society for Computer Simulation International, Mar. 2009, p. 49.

[28] ——, “Using genetic algorithms to limit the optimism in time warp,”
in Winter Simulation Conference, ser. WSC ’09. Winter Simulation
Conference, Dec. 2009, pp. 1180–1188.

[29] A. Pellegrini, “Optimizing memory management for optimistic simula-
tion with reinforcement learning,” in 2016 International Conference on
High Performance Computing & Simulation (HPCS). IEEE, Jul. 2016.

[30] S. Conoci, M. Ianni, R. Marotta, and A. Pellegrini, “Autonomic
power management in speculative simulation runtime environments,” in
Proceedings of the 2020 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation, ser. SIGSIM-PADS’20. New York, NY,
USA: ACM, Jun. 2020, pp. 93–98.

[31] S. Hong and H. Kim, “An analytical model for a GPU architecture with
memory-level and thread-level parallelism awareness,” ACM SIGARCH
Computer Architecture News, vol. 37, p. 152, 2009.

[32] K. Kothapalli, R. Mukherjee, M. S. Rehman, S. Patidar, P. J. Narayanan,
and K. Srinathan, “A performance prediction model for the CUDA
GPGPU platform,” in 2009 International Conference on High Perfor-
mance Computing (HiPC). IEEE, Dec. 2009.

[33] G. Garcı́a and C. Yenyxe, “Modelo de estimación de rendimiento
para arquitecturas paralelas heterogéneas,” Master’s thesis, Universitat
Politècnica de València, Valencia, Spain, Feb. 2013.

[34] A. Kerr, G. Diamos, and S. Yalamanchili, “Modeling GPU-CPU work-
loads and systems,” Computer Engineering and Design, p. 31–42, 2010.

[35] S. Che and K. Skadron, “BenchFriend: Correlating the performance
of GPU benchmarks,” The international journal of high performance
computing applications, vol. 28, pp. 238–250, 2013.

[36] K. Sato, K. Komatsu, H. Takizawa, and H. Kobayashi, “A history-
based performance prediction model with profile data classification
for automatic task allocation in heterogeneous computing systems,” in
2011 IEEE Ninth International Symposium on Parallel and Distributed
Processing with Applications. IEEE, May 2011.

[37] C. Nugteren and H. Corporaal, “The boat hull model: enabling perfor-
mance prediction for parallel computing prior to code development,” in
Proceedings of the 9th conference on Computing Frontiers. New York,
NY, USA: ACM, May 2012.

[38] J. Meng and K. Skadron, “Performance modeling and automatic ghost
zone optimization for iterative stencil loops on GPUs,” in Proceedings
of the 23rd international conference on Supercomputing. New York,
NY, USA: ACM, Jun. 2009.

[39] J. W. Choi, A. Singh, and R. W. Vuduc, “Model-driven autotuning of
sparse matrix-vector multiply on GPUs,” SIGPLAN notices, vol. 45,
no. 5, pp. 115–126, May 2010.

[40] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, vol. 52, p. 65–76, 2009.

[41] J. Lai and A. Seznec, “Break down GPU execution time with an
analytical method,” in Proceedings of the 2012 Workshop on Rapid
Simulation and Performance Evaluation: Methods and Tools. New
York, NY, USA: ACM, Jan. 2012.

[42] Y. Zhang and J. D. Owens, “A quantitative performance analysis
model for GPU architectures,” in Proceedings of the 17th International
Symposium on High Performance Computer Architecture, ser. HPCA’11.
IEEE, Feb. 2011, pp. 382–393.

[43] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-M. W.
Hwu, “An adaptive performance modeling tool for GPU architectures,”
SIGPLAN notices, vol. 45, no. 5, pp. 105–114, May 2010.

[44] Y. Wang and N. Ranganathan, “An instruction-level energy estimation
and optimization methodology for GPU,” in Proceedings of the 11th
International Conference on Computer and Information Technology.
IEEE, Aug. 2011.

[45] Y. S. Shao and D. Brooks, “Energy characterization and instruction-level
energy model of intel’s xeon phi processor,” in International Symposium
on Low Power Electronics and Design (ISLPED). IEEE, Sep. 2013.

https://doi.org/10.1145/3518997.3531026

[46] S. Hong and H. Kim, “An integrated GPU power and performance
model,” Computer architecture news, vol. 38, no. 3, pp. 280–289, Jun.
2010.

[47] R. Ewald, J. Himmelspach, and A. M. Uhrmacher, “An algorithm
selection approach for simulation systems,” in 2008 22nd Workshop on
Principles of Advanced and Distributed Simulation. IEEE, Jun. 2008.

[48] T. Köster, N. M. Drüeke, and A. Uhrmacher, “Latency optimized
execution of sequential simulators by parallel parameter optimization,”
Online World Conference on Soft Computing in Industrial Applications,
pp. 4230–4231, Dec. 2018.

[49] M. Castro, R. Rodrigues, and B. Liskov, “BASE: Using abstraction
to improve fault tolerance,” ACM Transactions on Computer Systems,
vol. 21, no. 3, pp. 236–269, Aug. 2003.

[50] F. Quaglia, “Software diversity-based active replication as an approach
for enhancing the performance of advanced simulation systems,” In-
ternational Journal of Foundations of Computer Science, vol. 18, pp.
495–515, 2007.

[51] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H. Vangheluwe,
“Co-simulation: A survey,” ACM Comput. Surv., vol. 51, no. 3, pp. 1–
33, May 2018.

[52] H. El Tahawy, D. Rodriguez, S. Garcia-Sabiro, and J.-J. Mayol,
“VHDeLDO: A new mixed mode simulation,” in Proceedings of EURO-
DAC 93 and EURO-VHDL 93- European Design Automation Confer-
ence. IEEE Comput. Soc. Press, 1993, pp. 546–551.

[53] P. Fey, H. W. Carter, and P. A. Wilsey, “Parallel synchronization of
continuous time discrete event simulators,” in Proceedings of the 1997
International Conference on Parallel Processing, ser. ICPP’97. IEEE,
1997, pp. 227–231.

[54] IEEE, “IEEE standard for modeling and simulation (M&S) high level
architecture (HLA) federate interface specification,” Piscataway, NJ,
USA, pp. 1–480, 2008.

[55] M. Hybinette and R. M. Fujimoto, “Cloning parallel simulations,” ACM
transactions on modeling and computer simulation: a publication of the
Association for Computing Machinery, vol. 11, no. 4, pp. 378–407, Oct.
2001.

[56] O. Berry and D. Jefferson, “Critical path analysis of distributed simu-
lation,” in Proceedings of the 1985 SCS Multiconference on Distributed
Simulation, ser. PADS’85. San Diego, CA, USA: Society for Modeling
and Simulation International, 1985, pp. 57–60.

[57] D. Gianni, G. Iazeolla, and A. D’Ambrogio, “A methodology to predict
the performance of distributed simulations,” in 2010 IEEE Workshop on
Principles of Advanced and Distributed Simulation. IEEE, May 2010.

[58] J. Liu, D. Nicol, B. Premore, and A. Poplawski, “Performance prediction
of a parallel simulator,” in Proceedings Thirteenth Workshop on Parallel
and Distributed Simulation, ser. PADS’99. IEEE Comput. Soc, 2003,
pp. 156–164.

[59] P. Andelfinger and H. Hartenstein, “Towards performance evaluation
of conservative distributed discrete-event network simulations using
second-order simulation,” in Proceedings of the 1st ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation. New York,
NY, USA: ACM, May 2013.

[60] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease al-
gorithms for congestion avoidance in computer networks,” Computer
Networks and ISDN systems, vol. 17, no. 1, pp. 1–14, 1989.

[61] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the Brownian
motion,” Physical review, vol. 36, no. 5, p. 823, 1930.

[62] A. Pellegrini, R. Vitali, and F. Quaglia, “The ROme OpTimistic simula-
tor: Core internals and programming model,” in Proceedings of the 4th
International ICST Conference on Simulation Tools and Techniques, ser.
SIMUTOOLS. Brussels, Belgium: ICST, Apr. 2012, pp. 96–98.

[63] X. Liu and P. Andelfinger, “Time warp on the gpu: Design and
assessment,” in Proceedings of the 2017 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation, ser. SIGSIM PADS ’17.
New York, NY, USA: ACM, 2017, pp. 109–120.

[64] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and M. DiLoreto,
“Time warp operating system,” in Proceedings of the eleventh ACM
Symposium on Operating systems principles. New York, NY, USA:
ACM, 1987, pp. 77–93.

[65] R. Vitali, A. Pellegrini, and F. Quaglia, “A load-sharing architecture for
high performance optimistic simulations on multi-core machines,” in
Proceedings of the 19th International Conference on High Performance
Computing, ser. HiPC ’12. IEEE, Dec. 2012, pp. 1–10.

[66] D. M. Nicol, “The cost of conservative synchronization in parallel
discrete event simulations,” Journal of the ACM (JACM), vol. 40, no. 2,
pp. 304–333, 1993.

[67] R. M. Fujimoto, “Performance of time warp under synthetic workloads,”
in Distributed Simulation, ser. PADS ’90, D. Nicol, Ed. San Diego, CA,
USA: Society for Computer Simulation International, 1990, pp. 23–28.

	Introduction
	Related Work
	Sampling Heuristics
	Fixed Period
	Additive Increase, Multiplicative Decrease (AIMD)
	Energy Budget
	Monitor Leader

	Methodology
	Meta-simulation Procedure
	Performance Trajectory Generation
	Optimization Approach

	Evaluation
	Optimized Heuristics
	Empirical Results

	Conclusions
	References

