
Differentiable Agent-Based Simulation for
Gradient-Guided Simulation-Based Optimization

Philipp Andelfinger
University of Rostock

Institute for Visual and Analytic Computing
Rostock, Germany

ABSTRACT
Simulation-based optimization using agent-based models is typi-
cally carried out under the assumption that the gradient describing
the sensitivity of the simulation output to the input cannot be eval-
uated directly. To still apply gradient-based optimization methods,
which efficiently steer the optimization towards a local optimum,
gradient estimation methods can be employed. However, many
simulation runs are needed to obtain accurate estimates if the input
dimension is large. Automatic differentiation (AD) is a family of
techniques to compute gradients of general programs directly. Here,
we explore the use of AD in the context of time-driven agent-based
simulations. By substituting common discrete model elements such
as conditional branching with smooth approximations, we obtain
gradient information across discontinuities in the model logic. On
the example of microscopic traffic models and an epidemics model,
we study the fidelity and overhead of the differentiable models, as
well as the convergence speed and solution quality achieved by
gradient-based optimization compared to gradient-free methods.
In traffic signal timing optimization problems with high input di-
mension, the gradient-based methods exhibit substantially superior
performance. Finally, we demonstrate that the approach enables
gradient-based training of neural network-controlled simulation
entities embedded in the model logic.

CCS CONCEPTS
•Mathematics of computing→ Automatic differentiation; •
Theory of computation → Continuous optimization; Multi-
agent reinforcement learning; • Computing methodologies
→ Modeling methodologies; Agent / discrete models.

KEYWORDS
Agent-based simulation; Optimization; Backpropagation
ACM Reference Format:
PhilippAndelfinger. 2021. Differentiable Agent-Based Simulation for Gradient-
Guided Simulation-Based Optimization. In Proceedings of the 2021 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation (SIGSIM-
PADS ’21), May 31-June 2, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3437959.3459261

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGSIM-PADS ’21, May 31-June 2, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8296-0/21/05. . . $15.00
https://doi.org/10.1145/3437959.3459261

Simulation Model
Gradient-Free
Optimization

Method

Per-Agent Update LogicX f(X)

(a) Gradient-free simulation-based optimization.

Non-differentiable model building block
Differentiable model building block

Simulation Model

Gradient-Based
Optimization

Method

Per-Agent Update LogicX f(X)

∇f(X)

Recorded operations

Automatic
Differentiation

(b) Gradient-based simulation-based optimization.

Figure 1: Our approach: by substituting agent model ele-
ments with differentiable counterparts, automatic differen-
tiation can be used to enable gradient-based optimization.

1 INTRODUCTION
Simulation-based optimization comprises methods to determine a
simulation input parameter combination that minimizes or maxi-
mizes an output statistic [11, 32], with applications in a vast array
of domains such as supply chain management [37], transporta-
tion [51], building planning [66], and health care [68]. The problem
can be viewed as a special case of mathematical optimization in
which an evaluation of the objective function is reflected by the
execution of one or more simulation runs. Many mathematical
optimization methods evaluate not only the objective function it-
self but also its partial derivatives to inform the choice of the next
candidate solution. Given a suitable initial guess, gradient-based
methods efficiently steer the optimization towards a local optimum,
with provable convergence under certain conditions [55].

In contrast, simulation-based optimization using agent-based
models usually relies either on surrogate models, which typically
abandon the individual-based level of detail of the originalmodel [4],
or on gradient-free methods such as genetic algorithms [10]. While
gradient-free simulation-based optimization is a time-tested ap-
proach, the hypothesis underlying the present paper is that the
targeted local search carried out by gradient-based methods may
achieve faster convergence or higher-quality solutions for certain
agent-based models. An existing method to obtain gradients is In-
finitesimal Perturbation Analysis (IPA) [29], which the literature
applies by determining derivative expressions by a manual model

Session 1: Machine Learning and Simulation SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

27

https://doi.org/10.1145/3437959.3459261
https://doi.org/10.1145/3437959.3459261
https://www.acm.org/publications/policies/artifact-review-and-badging-current

analysis (e.g., [13, 22, 33]), limiting its applicability to relatively
simple models. Alternatively, gradients can be estimated based on
finite differences. However, the number of required simulation runs
grows linearly with the input dimension, rendering this approach
prohibitively expensive in non-trivial applications.

A similar problem, as well as an efficient solution, exists in the
field of deep learning, where the ability to optimize neural networks
with millions of parameters within tolerable timeframes rests on
gradient information determined using the backpropagation algo-
rithm [56]. Backpropagation is a special case of automatic differ-
entiation, a family of methods to compute derivatives of computer
programs written in general-purpose programming languages [47].

In this paper, we explore the use of automatic differentiation
for gradient-based optimization of agent-based simulations. The
main obstacle towards this goal is given by discontinuous model
elements, which are considered among the constituent features
of agent-based models [9]. To enable differentiation across such
elements, we propose substitutes constructed from known smooth
approximations of basic operations (cf. Fig. 1). In contrast to classical
surrogate modeling approaches, our approach retains the per-agent
logic of the original model. The resulting agent-based models are
differentiable regarding some or all model aspects, depending on
the degree to which discontinuous elements are substituted. We
refer to this approach as differentiable agent-based simulation.

To evaluate the approach, we implement models from the trans-
portation and epidemics domains in a differentiable fashion and
study 1. the fidelity of the results as compared to purely discrete
reference models, 2. the overhead introduced by relying on smooth
model building blocks, and 3. the relative convergence behavior and
solution quality in simulation-based optimization problems as com-
pared to gradient-freemethods. To further showcase the potential of
the approach, we extend the traffic simulation model by embedding
neural network-controlled traffic signals in the differentiable model
logic, which enables their training using gradient-based methods.
Our implementations are made available to the community1.

Our main contributions are as follows:

• Differentiable agent-based simulation, i.e., the construc-
tion of agent-basedmodels from differentiable building blocks
to enable automatic differentiation and gradient-based opti-
mization. An initial set of building blocks to construct differ-
entiable model implementations is presented.

• Differentiable model implementations based on well-
known models from the literature to demonstrate the ap-
proach. We measure the fidelity and performance compared
to discrete reference implementations.

• Comparison of convergence and solution quality in a
simulation-based traffic signal timing optimization using
gradient-free and gradient-based methods.

• Embedding and training of neural network-controlled
entities, demonstrating their training based on simulation
gradient information on the example of dynamic traffic lights.

The remainder of the paper is structured as follows: In Section 2,
we briefly introduce automatic differentiation, which forms the
basis for our approach. In Section 3, the concept of differentiable

1https://doi.org/10.5281/zenodo.4625502

𝒙𝑣1 ()2 𝑣3

×

𝑣4

𝒚𝑣2 sin

𝑣5

Figure 2: Simple example function sin (𝒙2𝒚). Automatic dif-
ferentiation propagates values reflecting the sensitivities of
the intermediate results w.r.t. the inputs along the nodes 𝒗𝒊 .

agent-based simulation is introduced and building blocks are pro-
vided to construct differentiable models. In Section 4, we describe
the differentiable models we implemented to demonstrate the ap-
proach. In Section 5, experiment results are presented to evaluate
the performance and fidelity of the model implementations as well
as the benefits of our approach in simulation-based optimization
problems. In Section 6, we discuss limitations of the approach and
various directions for future research. Section 7 describes related
work. Section 8 summarizes our results and concludes the paper.

2 AUTOMATIC DIFFERENTIATION
In this section, we give a brief overview of Automatic Differentia-
tion (AD), which comprises techniques to computationally deter-
mine gradients of computer programs [47]. In contrast to finite
differences, AD determines exact partial derivatives for an arbitrary
number of either input or output variables from a single program ex-
ecution. In comparison to symbolic differentiation as implemented
in computer algebra systems, AD avoids representing the frequently
long derivative expressions explicitly [5].

AD computes derivatives based on the chain rule from differen-
tial calculus. In the forward mode, intermediate results of differ-
entiating the computational operations w.r.t. one of the inputs are
carried along during the program’s execution. At termination, the
partial derivatives of all output variables w.r.t. one input variable
have been computed. Thus, given 𝑛 input variables, 𝑛 passes are
required. Conversely, reverse-mode AD computes the derivatives of
one output variable w.r.t. arbitrarily many inputs in a single pass.
Given our use case of simulation-based optimization, where we
expect the input dimension to be larger than the output dimension,
the remainder of the paper will rely on reverse-mode AD.

During the execution of the program, the computational oper-
ations and intermediate results are recorded in a graph. At termi-
nation, the graph is traversed in reverse, starting from the output.
The chain rule is applied at each operation to update the intermedi-
ate derivative calculation. When arriving at an input variable, the
computed value is the partial derivative of the simulation output
w.r.t. the respective input. We give a brief example of reverse-mode
AD of a program implementing the function 𝑓 (𝑥,𝑦) = sin(𝑥2𝑦)
(cf. Figure 2). The intermediate results during execution (denoted
by 𝑣𝑖) and during reverse-mode AD (denoted by 𝑣𝑖) are as follows:
𝑣1 = 𝑥 𝑣5 = 1
𝑣2 = 𝑦 𝑣4 = 𝜕𝑣5

𝜕𝑣4
𝑣5 = cos(𝑣4)1 = cos(𝑥2𝑦)

𝑣3 = 𝑣12 = 𝑥2 𝑣3 = 𝜕𝑣4
𝜕𝑣3

𝑣4 = 𝑣2𝑣4 = 𝑦 cos(𝑥2𝑦)
𝑣4 = 𝑣3𝑣2 = 𝑥2𝑦 𝑣2 = 𝜕𝑣4

𝜕𝑣2
𝑣4 = 𝑣3𝑣4 = 𝑥2 cos(𝑥2𝑦)

𝑣5 = sin(𝑣4) = sin(𝑥2𝑦) 𝑣1 = 𝜕𝑣3
𝜕𝑣1

𝑣3 = 2𝑣1𝑣3 = 2𝑥𝑦 cos(𝑥2𝑦)

Session 1: Machine Learning and Simulation SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

28

https://doi.org/10.5281/zenodo.4625502

The partial derivatives of the function are 𝜕𝑓
𝜕𝑥 = 𝑣1 = 2𝑥𝑦 cos(𝑥2𝑦)

and 𝜕𝑓
𝜕𝑦 = 𝑣2 = 𝑥2 cos(𝑥2𝑦).

Mature implementations of AD are available for programming
languages such as C and C++ [24, 31], Java [58], and Julia [36].
Modern AD tools rely on expression templates [31] or source-to-
source transformation [36] to generate efficient differentiation code.

The backpropagation algorithm used to train neural networks is a
special case of AD [5], where the computation graph is the sequence
of multiplications, additions and activation function invocations
reflecting a forward pass through the network. Outside of machine
learning, AD has been applied for solving differential equation [54],
in physics applications [35], and for optimal control [3].

There is a growing interest in expressing a broader range of
general algorithms in a differentiable manner (e.g. [15, 25, 57]).
Apart from enabling the gradient-based optimization of program
parameters, differentiable programs can be directly integrated into
network training pipelines, enabling gradient information to propa-
gate through a combined computation graph comprised of a neural
network and application-specific algorithms [17, 18].

3 DIFFERENTIABLE AGENT-BASED
SIMULATION

From a computational perspective, a simulation model implementa-
tion applies a sequence of logical and arithmetic operations to the
input variables to produce a set of output variables. Our goal is to
extract derivatives from model executions that can guide gradient-
based optimization methods, which requires the operations to be
differentiable and to yield finite and non-zero derivatives. However,
typical agent-based models must be expected to contain discontin-
uous elements: viewed as functions on the reals, model elements
such as conditional branching and discrete state transitions may
be non-differentiable in certain points or regions of their domain,
and may carry unhelpful zero-valued derivatives in others. The
approach of differentiable agent-based simulation involves the con-
struction of model implementations from differentiable building
blocks that act as substitutes for non-differentiable model elements.

As a basic example, consider the following C code fragment
containing a conditional statement:
bool f(double x, double x0) {

if(x >= x0) return true;
return false;

}

For 𝑥0 = 0, the function behaves like the Heaviside step function
(cf. Fig. 3), the derivative of which is zero-valued at 𝑥 ̸= 0, and

 0

 0.5

 1

-4 -3 -2 -1 0 1 2 3 4

Heaviside
Logistic, k=1
Logistic, k=4

Logistic, k=16

Figure 3: Smooth approximation of the Heaviside step func-
tion using the logistic function.

infinite at 𝑥 = 0. A well-known smooth approximation [45] is
given by the logistic function: l𝑘 (𝑥) = (1 + 𝑒−𝑘(𝑥−𝑥0))−1, where k
determines the steepness of the curve, and 𝑥0 shifts the curve along
the x axis. In Fig 3, we also show the logistic function with 𝑥0 = 0,
varying 𝑘 . When increasing 𝑘 , the logistic function becomes a closer
and closer approximation of the Heaviside step function. To make
our example C function amenable to automatic differentiation, we
can simply substitute its body with return logistic(x, x0);

By varying 𝑥0, we can now approximate expressions of the form
𝑥 ≥ 𝑥0. In the remainder of the paper, we refer to this basic building
block as smooth threshold. In the remainder of this section, we
describe a number of more complex building blocks for agent-based
simulations. This bottom-up approach is similar in spirit to the
construction of reversible programs [53, 62], which has also found
applications in the simulation realm (e.g., [1, 67]). We emphasize
that the building blocks described in the following rely on well-
known continuous approximations and that the list is far from
complete; our intention is to gather a basic list of constructs as a
starting point for model development.

3.1 Conditional Execution and Branching
A challenge for automatic differentiation is given by control flow
that depends on the program input. Consider the code if(x >= x0)
y = c; else y = d;where x is the input, x0, c and d are constants,
and y is the output. During each execution, the control flow covers
exactly one of the branches. Thus, y is always assigned a constant,
and 𝑑𝑦

𝑑𝑥
, i.e., the sensitivity of y to changes in x, evaluates to 0. By ex-

pressing the control flow using a smooth approximation (as shown,
e.g., in [28]), we can extract a derivative across both branches:
double z = logistic(x, x0); y = z * c + (1 - z) * d;We
refer to this simple pattern as smooth branching.

3.2 Iteration
The core of a typical time-driven agent-based simulation is a nested
loop comprised of an outer loop that iterates across the time steps
and an inner loop that iterates across the agents. Assuming that the
number of time steps and agents are both constants, the loop rep-
resents static, i.e., input-independent, control flow, which requires
no further preparation for automatic differentiation.

Input-dependent loop conditions can be transformed into guards
if an upper bound for the number of iterations is known. For ex-
ample, variations in the number of agents can be implemented by
masking the behavior of non-existent agents using smooth threshold.
We give the example of incrementing an attribute by a constant for
two alive agents, while the operation is masked for a third agent:

int max_num_agents = 3;
double alive[] = { 1.0, 1.0, 0.0 };
for(int aid = 0; aid < max_num_agents; ad++)

agent[aid].attr += c * alive[agent_id];

3.3 Selection of Interaction Partners
The selection of interaction partners based on their attributes is
one of the fundamental primitives in agent-based simulations. A
straightforward differentiable solution to neighbor detection ap-
plies the principle described in the previous subsection: each agent

Session 1: Machine Learning and Simulation SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

29

iterates across all other agents, masking interactions with those for
which a certain condition does not hold.

An example is given by the traffic simulation model of Section 4:
each vehicle chooses its acceleration based on attributes of the
closest vehicle ahead. The selection of the minimum distance can
be achieved by iteratively applying a smooth approximation of
the minimum function: − log ∑

𝑖 𝑒
−𝑥𝑖 [14]. Once the distance to

the closest vehicle has been determined, additional attributes are
required to carry out the interaction. To support the retrieval of ad-
ditional attributes, we construct a select by attribute building block,
which selects an agent’s specified “target” attribute based on the
known value of a “reference” attribute. This is achieved by iterating
across all agents’ reference attributes, adding the target attribute
only if the reference attribute is sufficiently close to the known
value, based on an in_range function. The in_range function then
applies smooth threshold with bounds -eps and eps set to values
close to zero:
double sum = 0.0;
for(int i = 0; i < num_elems; i++)

sum += x[i] * in_range(ref[i] - ref_value, -eps, eps);
return sum;

For brevity, we assume that the attribute value allows us to
uniquely select the desired neighbor. If the uniqueness is not guar-
anteed by the model, multiple reference attributes can be supplied.
For instance, in the traffic model presented in Section 4, the vehicle
ahead is selected based jointly on its position and lane, which due
to the model behavior is sufficient to guarantee uniqueness.

An important downside of this interaction partner selection
method is its overhead, as each agent traverses all other agents.
In Sections 4 and 5, we present opportunities for performance im-
provements and evaluate the overhead of different model variants.

3.4 Time-Dependent Behavior
Agents may dynamically alter their behavior throughout the sim-
ulation. If the relation between time and behavior is not input-
dependent, it can be viewed as a static part of the model logic and
does not require further consideration with respect to differentia-
bility. An example are actions triggered every 𝑛 time steps.

Input-dependent periodic behavior can be expressed using the
smooth periodic step function l𝑘 (sin(𝜋𝑡𝑝)) shown in Figure 4, where
𝑡 is the current time and 𝑝 is the period. The action itself is then trig-
gered through smooth branching, relying on the smoothed periodic
step function to mask the action if it is currently inactive.

Actions that should only occur once can be scheduled using
smooth timers: a timer variable 𝑣𝑡 is initialized to the desired delta

 0

 0.5

 1

 1.5

 0 2 4 6 8 10 12 14 16 18 20

Periodic step function
Smooth approximation

Figure 4: Smooth approximation of a periodic step function.

in time and decremented at each time step, where l𝑘 (−𝑣𝑡 , 0) serves
as a condition for smooth branching. When the timer is not needed,
𝑣𝑡 can be set to a positive value larger than the simulation end time.

3.5 Stochasticity
For the purpose of differentiation, pseudo-random numbers (PRNs)
drawn based on a given seed throughout a simulation run can be
regarded as constants, even if the numbers are drawn at runtime.
To estimate the gradient of a stochastic model at a given parameter
combination, the gradients obtained from runs with different seeds
can be aggregated.While simple averaging can yield biased gradient
estimates, recent results by Eckman and Henderson indicate that
such estimates can still steer the optimization near local optima [20].

Importantly, even if PRNs are treated as constants, the effects of
subsequent operations on PRNs are still captured by the gradient.
An example is inverse transform sampling, which transforms uni-
formly distributed PRNs to a target distribution. In the epidemics
model of Section 4, the rate of the target exponential distribution is
affected by the simulation input. In that situation, the sensitivity of
the exponential variate to changes in the input is captured by the
gradient. A more sophisticated treatment of stochasticity, e.g., by
operating directly on distributions [12], is left for future work.

4 MODEL IMPLEMENTATION
We prepared four models for automatic differentiation, three of
which represent vehicle traffic controlled by traffic lights. The first
variant allows gradient information to propagate through all model
elements, but is limited in its scalability. By restricting differen-
tiability to aspects relevant to our use case of simulation-based
optimization, two further variants are able to scale to road net-
works populated by thousands of vehicles. Finally, we consider
an agent-based formulation of the classical susceptible-infected-
recovered model extended by movement on a graph.

4.1 Microscopic Traffic Simulation
The traffic simulations rely on model classes encountered in com-
mon academic and commercial traffic simulators such as SUMO [6]
and VISSIM [21]. The agents’ longitudinal movement is governed
by the Intelligent Driver Model (IDM) [63]. IDM defines a vehicle’s
acceleration by the following ordinary differential equation:

𝑑𝑣

𝑑𝑡
= 𝑎0

(
1 −

(
𝑣

𝑣𝑑

)𝛿
−

(
𝑠0 + 𝑣𝑇 + (𝑣∆𝑣)/(2

√
𝑎0𝑏0)

∆𝑝

)2)
Here, 𝑎0 is the maximum acceleration, 𝑣 is the current velocity, 𝑣𝑑
is the target velocity, 𝑠0 is the minimum desired distance to the
vehicle ahead, 𝑏0 is the maximum deceleration and ∆𝑝 and ∆𝑣 are
the position and velocity deltas to the leading vehicle. The tuning
parameter 𝛿 is typically set to 4 [63]. In time-driven microscopic
traffic simulations, each vehicle determines an acceleration value
for the next time step from 𝑡 to 𝑡 + 𝜏 based on the vehicle states at 𝑡 .
From the acceleration, the new velocity and position is determined.
A comparison of the fidelity of different integration schemes is
given in [2].

For lane changing, we rely on a simplified model similar to
MOBIL [40]: every𝑛 time steps, the vehicles determine the projected
increase in clearance observed after a hypothetical lane change to

Session 1: Machine Learning and Simulation SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

30

the left or right lane, if any. If the clearance increase is beyond a
configurable threshold, an instantaneous lane change is carried out.

The traffic is controlled by traffic lights with static or dynamic
timing as described below. Overall, we obtain hybrid models com-
posed of an originally continuous car-following behavior, which is
discretized through numerical integration, and the purely discrete
transitions in the lane changing behavior and traffic light control.

4.1.1 Single Multi-Lane Road. The purpose of this initial model
variant is to explore the viability of implementing a fully differ-
entiable model, i.e., one in which the computed gradients capture
the behavior of all model elements, and to study the computed
gradients when varying the input parameters. While we hope for
the model description to be instructive, we will see that for practical
applications, it seems preferable to limit the incurred overhead by
restricting the differentiability to selected model elements.

We first consider the car-following model IDM, which in a time-
driven formulation directly relates the new acceleration of a vehicle
to its leader’s current state, making automatic differentiation of
the acceleration update itself straightforward. A challenge lies in
determining the leader: in a typical implementation, the vehicles
located on a lane are stored in a sorted fashion, rendering the
leader selection trivial. However, differentiable sorting is a non-
trivial problem currently under active research [15, 25]. Thus, given
an unordered list of vehicles, we determine a vehicle’s leader by
iterating across all vehicles and determining the vehicle with the
minimum positive position delta. Since we require both the position
and velocity of the leader, we arrive at a two-step process: first,
we determine the leader’s position by repeatedly applying smooth
minimum as described in Section 3.3, masking negative position
deltas using smooth threshold. Finally, select by attribute determines
the leader’s velocity based on its position and lane.

Lane changing decisions aremade periodically by iterating across
all agents and determining the lane with the largest forward clear-
ance using smooth maximum, after which smooth threshold is ap-
plied to determine whether the clearance justifies a lane change.

A traffic light spanning all lanes is positioned on the road, al-
ternating between green and red phases of equal duration using
periodic step function. The vehicles brake at red lights according
to IDM given a zero-velocity leader. This is achieved using smooth
branching on three conditions: the light is red, the light is still ahead,
and the light is closer than the leading vehicle, if any.

While this fully differentiable model variant is operational, it is
prone to produce artifacts. For instance, when a vehicle advances
past the end of a road 𝑙 meters in length, its position is reset to the
beginning of the road using the smooth threshold building block. If
the vehicle position happens to be exactly 𝑙 meters, the argument
to the logistic function is 0, yielding a new vehicle position of
𝑙
2m/s instead of the desired 0m/s. The probability for such artifacts
to occur can be controlled by adjusting the slope of the logistic
function (cf. Section 3) at the cost of an increase of the magnitudes
of the derivatives around 0, and a decrease everywhere else.

Given these considerations, the model variants described below
follow a more pragmatic approach that restricts the differentiability
to those model aspects for which we expect gradient information
to directly benefit our use case of simulation-based optimization.

4.1.2 Grid Network with Static Signal Timings. In this model vari-
ant, the vehicles traverse a grid-shaped network of multi-lane roads
(cf. Figure 5) connected at the grid boundaries to form a torus. At
each intersection, traffic lights are placed at the incoming roads.
The timings of the light phases at the intersections are given as
offsets in logical time, which form the simulation input. When en-
countering an intersection, the vehicles turn left or right or advance
to the road ahead based on configurable probabilities. While the
vehicles’ behavior with regard to their acceleration, lane changing,
and the traffic lights is identical to the previous model variant, the
implementation follows a different approach: our ultimate objec-
tive is to maximize the overall vehicle progress by adjusting the
traffic light timings. Hence, the key model elements for which we
aim to extract gradient information are the light control and the
longitudinal movement of the vehicles. The specific differences
to the previous model pertain to determining a vehicle’s leader,
the lane changing, and the advancement to adjacent roads. These
aspects follow their natural implementations based on storing and
updating the vehicle states in per-lane arrays sorted by position and
are hence not captured in the computed gradients. As an example,
suppose a slight change in the simulation input would cause a new
lane change, which in turn would affect the simulation output. As
the model does not offer differentiability across lane changes, the
gradient would not reflect this possibility.

Aside from the performance benefits of this approach (cf. Sec-
tion 5), the more natural implementation suggests that integrating
automatic differentiation capabilities in an existing traffic simulator
could be possible without excessive development efforts.

In Section 5.2, this model variant serves as an example for sim-
ulation-based optimization. One input parameter per intersection
represents the light phase offset and will be adjusted to maximize
the vehicles’ progress. To limit the input dimension, existing work
considers only small numbers of intersections (e.g., [16]) or reduces
the model detail from an individual-based view as used in our work
to the mesoscopic or macroscopic level (e.g., [69]).

4.1.3 Grid Network with Neural Network-Controlled Signals. In this
model variant, we substitute the traffic light control based on time
offsets with a dynamic control using a neural network. The setup is
illustrated in Figure 6: the neural network is invoked periodically
as part of the model logic. At each decision point, the current posi-
tions of all vehicles in the simulation are provided as input to the
neural network, its output being the new traffic light phases (red

Figure 5: A section of the grid scenario: the vehicles tra-
verse a grid of light-controlled intersections. At the network
boundaries, vehicle positions wrap around.

Session 1: Machine Learning and Simulation SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

31

for step in 1..k:
 foreach vehicle:
 vehicle.update()

Vehicle Model Neural Network

...

...

Vehicle
positions

Traffic
light
phases

for step in 1..k:
 foreach vehicle:
 vehicle.update()

Vehicle Model Neural Network

...

...

Vehicle
positions

Traffic
light
phases

for step in 1..k:
 foreach vehicle:
 vehicle.update()

Vehicle Model

...
Vehicle
positions

y: vehicle

∂y/∂x1, ∂y/∂x2,
.., ∂y/∂xn

x1, x2, .., xn:
weights, biases progress

Figure 6: Neural network-controlled traffic lights embedded in a traffic simulation. As the neural network is part of the differ-
entiable model logic, training can rely on the partial derivatives w.r.t. the network coefficients returned by the simulation.

or green) for the horizontal roads at each intersection, the vertical
roads being assigned the opposite phase. Since the neural network
is implemented as part of the model logic, the gradients extracted
through automatic differentiation directly reflect the sensitivity of
the vehicles’ movement to the neural network’s coefficients, en-
abling gradient-based training in order to optimize the traffic flow.
This is in contrast to reinforcement learning approaches, which
typically operate under the assumption that a system model is not
available and that the effect of the trained entity’s actions must be
explored by observing the resulting states and “rewards” through-
out repeated simulation runs [38]. In our case, each simulation
run returns not only an overall reward in the form of the vehicles’
progress, but also derivatives that guide the optimization towards
a locally optimal traffic light response. A small number of existing
works rely on automatic differentiation to train neural networks
in the context of purely continuous control applications [5]. We
are not aware of any work that relied on automatic differentiation
to directly train neural networks embedded in the model logic of
agent-based simulations or traffic simulations.

The neural network follows a fully connected feed-forward archi-
tecture: there are 5 input neurons for each lane in the road network,
the input being the sorted positions of the 5 vehicles closest to the
intersection. There is a single hidden layer comprised of ℎ neurons.
The output layer is comprised of one neuron per intersection, which
yield the new traffic light states. Given 𝑖 intersections, 4 incoming
roads per intersection, and 3 lanes per road, the architecture results
in (60𝑖 + 1)ℎ + (ℎ + 1)𝑖 coefficients to be adjusted. All neurons rely
on the hyperbolic tangent function for activation. The traffic light
states returned by the neural network are floating point numbers
translated to green or red phases using smooth threshold, a positive
value representing a green light at a horizontal road.

4.2 Epidemics Model on a Graph
The final model follows Macal’s agent-based formulation [46] of
the well-known Susceptible-Infected-Recovered model [39], which
imitates the spread of an infection. We extend this model by random
movement on a social graph. The model serves to illustrate the
viability of automatic differentiation given purely discrete agent
states and under strong dependence on stochastic model elements.

An arbitrary number of agents is situated on each node of a
static graph. Initially, each agent is either in the “susceptible” or
“infected” state, the probability being a model input. At each time
step, each agent 𝑎 acts as follows: if 𝑎 is susceptible, each infected
agent 𝑎′ ̸= 𝑎 at the current location infects 𝑎 with a per-location
probability given as an input. If 𝑎 is newly infected, the delay to the
transition to the “recovered” state is drawn from an exponential

distribution, the rate being another input. Finally, the agent moves
to a neighboring graph node chosen uniformly at random.

For a given seed value, the agents change their locations accord-
ing to predetermined trajectories. As the sequence of visited loca-
tions is thus fixed, the overhead of differentiable neighbor search
can be avoided by gathering each agent’s neighbors from an ar-
ray updated each time step. The key remaining model aspects are
constructed from differentiable building blocks: infections are han-
dled by supplying uniformly distributed random variates and the
infection probabilities as input to smooth branching. Recovery is
an instance of the smooth timer building block. Using as input a
uniform random variate and the simulation input specifying the
recovery rate, we determine the concrete delay until the agent recov-
ers using inverse transform sampling. As the gradient information
propagates through the uniform-to-exponential transformation, the
computed gradients capture the sensitivity of the simulation out-
put to the configured recovery rate. At each time step, the smooth
branching building block is applied to carry out the transition to
the “recovered” state once the recovery delay has expired.

5 EXPERIMENTS
Our experiments are intended to answer the research question:
“Can gradient-based simulation-based optimization using the pre-
sented differentiable models outperform gradient-free methods?”

To achieve a benefit during optimization, the fidelity of the dif-
ferentiable model must be sufficient so that the quality of identified
solutions carries over to the non-differentiable reference model. Fur-
ther, the execution time overhead of the simulation must be small
enough not to outweigh potential improvements in convergence
speed. Thus, in the remainder of the section, we evaluate the fidelity
and overhead of the differentiable model variants. The overall ben-
efit of gradient-based over gradient-free optimization is evaluated
in a number of simulation-based optimization experiments.

The experimentswere conducted on twomachines each equipped
with two 16-core Intel Xeon CPU E5-2683v4 and 256GiB of RAM,
running CentOS Linux 7.9.2009. The automatic differentiation relied
on Adept 1.1 [31]. For optimization, we used ensmallen 2.15.1 [7].

5.1 Single Multi-Lane Road
We first study the deviation of the results generated by the fully
differentiable model as compared to a non-differentiable reference
implementation. The road has three lanes 250m in length. A traffic
light is positioned at 100m, with an overall period of 10s, divided
into green and red phases of 5s each. The speed limit is set to
50km/h. Lane changes may occur every 2.5s, requiring a minimum

Session 1: Machine Learning and Simulation SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

32

 100

 150

 200

 250

 300

 0 2 4 6 8 10

V
e
h
ic

le
 p

ro
g
re

s
s
 [
m

]

Configured traffic light phase offset [s]

Differentiable simulation
Reference simulation

(a) Vehicle progress.

-1000

-100

-10

 0

 10

 100

 1000

 0 2 4 6 8 10

d
y
/d

x

Configured traffic light phase offset [s]

(b) Derivative of the vehicle progress w.r.t. the phase offset.

Figure 7: Overall vehicle progress and its derivative in the
single-road scenario with two vehicles.

clearance increase of 10m. The IDM parameters defining the maxi-
mum acceleration and deceleration are both set to 2m/s. Where not
otherwise noted, the same parameters are used in the microscopic
traffic simulation experiments presented below. The time step size
𝜏 is set to 0.1s. Initially, we position the vehicle at different lanes in
non-zero increments of 40m from the beginning of the road.

Figure 7a compares the vehicle progress in meters throughout
a simulation involving two vehicles spanning 10s of logical time
between the differentiable simulation and the non-differentiable
reference. The x axis shows the simulation input, which is the time
at which the traffic light first changes to red. We show results with
the slope parameter of the logistic function set to 32.

The sharp increases in the vehicle progress around 1s and 4s
reflect situations where a vehicle passes the light just before it
changes, instead of braking sharply. The curve for the differentiable
simulation slightly deviates from the reference, the reason being
the smoothing of the traffic light control, which delays the braking
and acceleration when the light changes.

Figure 7b shows the derivative of the simulation output w.r.t. the
input parameter determined by automatic differentiation. The de-
rivative expresses the sensitivity of the vehicle progress to changes
in the traffic light offset. We can see that overall, the derivative
follows the slope of the simulation output curve, sharp increases in
the simulation output being reflected by spikes in the derivative.
However, an additional negative spike at an offset of around 7.5s
illustrates that the derivative only represents the slope in a given
point of the simulation input and is thus sensitive to implementa-
tion artifacts. Artifacts of this type occur when a real value that
represents a boolean or integer deviates too far from its reference
value. In Figure 7a, the resulting miniscule “dent” in the simulation
response, which is not present in the reference simulation, trans-
lates to a large derivative. This effect becomes more pronounced
when increasing the slope of the logistic function.

 1
 4

 16
 64

 256
 1024
 4096

 16384
 65536

 1 2 4 8 16 32

F
a
c
to

r

Number of Vehicles

Execution time
Memory usage

Figure 8: Performance of the fully differentiable traffic sim-
ulation relative to a non-differentiable reference simulation.
The overhead increases strongly with the vehicle count.

We measured the performance of the differentiable simulation
compared to the basic reference implementation. Figure 8 shows
the relative wall-clock time per run and the relative memory usage.
The main overhead is induced during the simulation itself, during
which the operations are recorded in preparation for the subsequent
differentiation step. The contribution of the differentiation at 32
vehicles was about 170s of a total of 789s, or about 22%.

Given the issue of model artifacts and the enormous overhead of
this fully differentiable model, the models evaluated in the follow-
ing restrict the differentiable aspects to the traffic light control and
the vehicles’ forward movement. In Section 6, we discuss further op-
tions to reduce the overhead while maintaining the differentiability
of the main model components.

5.2 Grid Network with Static Signal Timings
We now evaluate the traffic model where we restricted the differ-
entiable aspects to the traffic light control and the vehicles’ longi-
tudinal movement. The grid network used in the experiments is
comprised of three-lane roads 100m in length, with a speed limit of
35km/h. At an intersection, a vehicle advances to the road on the
left, right, or straight ahead with probabilities 0.05, 0.05, and 0.9.
The slope parameter of the logistic function was set to 32.

Figure 9 shows the performance comparison to the non-differ-
entiable reference simulation on a grid comprised of 50x50 inter-
sections spanning 180s of logical time. The traffic lights alternate
between red and green phases of 10s each. While there is still a
substantial overhead in memory usage and execution time, the
overhead is significantly lower than with the fully differentiable
model. In particular, the execution time factor is now only weakly
affected by the number of vehicles. In contrast to the execution

 0.25
 1

 4
 16
 64

 256

 1024
 4096

 1 4 16 64 256 1024 4096 16384

F
a
c
to

r

Number of Vehicles

Execution time
Memory usage

Figure 9: Performance of the traffic simulation on a grid net-
work relative to a non-differentiable reference implementa-
tion. The overhead is substantially smaller compared to the
fully differentiable model (cf. Fig. 8).

Session 1: Machine Learning and Simulation SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

33

time, the relative memory consumption still increases with the
number of vehicles as the results of more and more intermediate
computational operations have to be stored to permit the subse-
quent gradient computation. Still, with an absolute execution time
of 2.7s and a memory usage of 1.6GiB with 1 024 vehicles, and 47.2s
using 23.2GiB with 16 384 vehicles, we consider this model to be
sufficiently scalable to cover scenarios of practical relevance.

We now turn to the comparison of the gradient-based and gradient-
free simulation-based optimization. Our goal is to maximize the
vehicle progress by adjusting the traffic light timings. The follow-
ing gradient-free optimization methods are employed: Differential
Evolution (DE) [60], Conventional Neural Evolution (CNE) [50],
and Simulated Annealing (SA) [43] To include a representative of
methods based on gradient estimations, we also show results using
Stochastic Perturbation Stochastic Approximation (SPSA) [59]. The
optimization using differentiable simulation relies on the follow-
ing gradient-based methods: Stochastic Gradient Descent (SGD),
Adaptive Moment Estimation (Adam) [42], and Nadam [19].

The optimizers are configured using varying numbers of param-
eters. To limit the number of optimization runs for evaluation, we
adjust only two parameters and use the default values configured in
the ensmallen library for the remaining parameters: 1. The step size
(or its equivalent) is set to the values {10−3, 10−2, .., 100}, and 2. for
DE and CNE, which combine the current best solutions only after
completing a so-called generation of runs, we reduce the generation
size from its default of 500 to 50. Each optimization process starts
from the same randomly initialized parameter combination. For
each optimizer, we show the improvement over the initial parame-
ter combination for the step size that achieved the maximum value
within the time budget of 72 hours.

Figure 10a shows the optimization progress as the improvement
over the initial random parametrization for a 50x50 grid populated

 0

 100

 200

 300

 400

 500

 1 10 100 1000 10000

V
e
h
.
P

ro
g
re

s
s
 I
m

p
r.

 [
k
m

]

Simulation Batch

Adam

Nadam

SGD

CNE
DE

SPSA
SA

(a) Best observed solution across batches of 10 runs each.

 0

 100

 200

 300

 400

 500

 0 6 12 18 24 30 36 42 48 54 60 66 72

V
e
h
.
P

ro
g
re

s
s
 I
m

p
r.

 [
k
m

]

Wall-Clock Time [h]

Adam

Nadam

SGD

CNE
DE

SPSA
SA

(b) Best observed solution across wall-clock time.

Figure 10: Optimization progress for the 50x50 grid scenario
using static traffic light control with a period of 20s.

with 2 500 vehicles, with an overall traffic light control period of
20s. The total number of parameters to be adjusted is 2 500. Each
point in the parameter space is evaluated by executing a batch
of 10 simulation runs, averaging the returned output values, and,
for the differentiable simulation, the gradients. To avoid an exces-
sive impact of large individual derivatives, we employ gradient
clipping [52], restricting the derivatives to the arbitrarily chosen
interval [−10, 10]. The same initial vehicle positions are used in
all runs, randomizing only the turns at intersections, to introduce
sufficient regularity in the traffic patterns to permit an optimization
of the traffic light timings. Due to the overhead of the differen-
tiable simulation, the gradient-based methods executed only about
4 000 simulation batches within the time budget, compared to about
64 000 with the gradient-free methods. However, the optimization
progress per batch is immensely faster than with the gradient-free
methods. For instance, after 100 batches, all gradient-based methods
achieve an improvement of about 100km, whereas the improvement
achieved by any of the gradient-free methods was still below 20km.

Since practical applications are concerned with the solution
quality achieved within a given time or compute budget, Figure 10b
shows the optimization progress across wall-clock time. Due to
the faster execution of the non-differentiable simulation, the initial
benefit of the gradient-based optimization is somewhat reduced.
Still, the best solution quality up to any given point in time is still
vastly superior with the gradient-based methods.

A gradient-based optimization could also be carried out using
finite differences based on the non-differentiable simulation, which
is faster than its differentiable counterpart by a factor of about 16.
However, given the 2 500 simulation inputs, 2 501 batches would
need to be executed in each point to obtain a gradient estimate,
requiring roughly 2.7h of wall-clock time per point. Since this would
allow for an exploration of only about 25 parameter combinations
within the time budget of 72h, we abstained from implementing
the gradient-based optimization using finite differences.

To show the validity of the comparison between the gradient-
based and gradient-free optimization results, we used the highest-
quality solution returned by Adam as input to the non-differentiable
reference simulation, executing 100 runs. The mean overall vehicle
progress including the progress in the initial solution, with 95%
confidence intervals was 3 467.2 ± 0.8km in the differentiable simu-
lation and 3 375.1 ± 0.9km in the non-differentiable simulation. For
comparison, the best solution found using CNE translated to only
3 175.2 ± 0.9km of vehicle progress.

We repeated the experiment after increasing the traffic light
period from 20s to 40s. In Figure 11, we see that in this config-
uration, the gradient-based methods are outperformed by CNE,
achieving a similar solution quality as DE. A likely reason is given
by the periodic step function: with a longer light period, there is a
larger probability of generating very small gradients, which pose a
challenge to the gradient-based methods [30] (cf. Section 6).

The experiment was repeated with a network of 100x100 in-
tersections and 10 000 vehicles, which increases the number of
parameters to 10 000 while maintaining the same vehicle density.
Figures 12a and 12b show that as a result, the advantage of the
gradient-methods is more pronounced, with consistently and vastly
better solution quality compared to the gradient-free methods.

Session 1: Machine Learning and Simulation SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

34

 0

 50

 100

 150

 200

 250

 300

 0 6 12 18 24 30 36 42 48 54 60 66 72

V
e
h
.
P

ro
g
re

s
s
 I
m

p
r.

 [
k
m

]

Wall-Clock Time [h]

Adam

Nadam

SGD

CNE
DE

SPSA
SA

Figure 11: Optimization progress with 50x50 intersections
and a traffic light control period of 40s.

 0

 500

 1000

 1500

 2000

 0 6 12 18 24 30 36 42 48 54 60 66 72

V
e
h
.
P

ro
g
re

s
s
 I
m

p
r.

 [
k
m

]

Wall-Clock Time [h]

Adam

Nadam

SGD

CNE
DE

SPSA
SA

(a) Traffic light control period of 20s.

 0

 100

 200

 300

 400

 500

 600

 700

 0 6 12 18 24 30 36 42 48 54 60 66 72

V
e
h
.
P

ro
g
re

s
s
 I
m

p
r.

 [
k
m

]

Wall-Clock Time [h]

Adam

Nadam

SGD

CNE
DE

SPSA
SA

(b) Traffic light control period of 40s.

Figure 12: Optimization progress, 100x100 intersections.

5.3 Grid Network with Neural
Network-Controlled Signals

A similar optimization experiment as above was carried out on a
5x5 grid populated by 200 vehicles, introducing dynamic traffic light
control by a neural network. Given that each decision of the traffic
light control remains in effect for 20s, an optimal policy would con-
sider not only the vehicle positions at each intersection, but would
also include the positions and traffic light phase at the neighbor-
ing intersections. The number of neurons in the hidden layer was
set to 60, resulting in 91 585 neural network coefficients forming
the simulation input. All optimization methods started from the
same initial parameter combination drawn from a standard normal
distribution. After preliminary experiments, we accelerated the
optimization progress by randomizing the initial vehicle positions
for each run and by modifying the simulation output to be the
minimum progress among the vehicles instead of the sum progress.

Figure 13 shows that for this problem, the gradient-free methods
achieve somewhat faster initial progress. However, beyond about
12 hours, Adam and Nadam outperform all gradient-free methods.
At the end of the time budget of 120h, the highest overall vehicle
progress achieved by Adam, as measured in the non-differentiable

 0

 5

 10

 15

 20

 25

 0 12 24 36 48 60 72 84 96 108 120

V
e
h
.
P

ro
g
re

s
s
 I
m

p
r.

 [
k
m

]

Wall-Clock Time [h]

Adam

Nadam

SGD

CNE
DE

SPSA
SA

Figure 13: Optimization progress for the grid traffic scenario
with neural network-controlled traffic lights.

Deviating Agent States [%]

P
a

ra
m

e
tr

iz
a

tio
n

s
 [
%

]

0.0 0.2 0.4 0.6 0.8

0
4

8
1

2

Figure 14: Comparison of results from the differentiable
and non-differentiable epidemics models. The vertical and
dashed lines indicate the median and 95%-quantile.

simulation, was 47.8 ± 0.7km. The best result among the gradient-
free methods achieved by CNE was 31.3 ± 0.9km. Given 91 585
inputs, the cost of the finite differences method is again prohibitive.

5.4 Epidemics Model on a Graph
For the Susceptible-Infected-Recovered model, we are particularly
interested in the fidelity since the differentiable variant must rep-
resent the originally purely discrete agent states as real numbers.
We executed 100 simulations each for 1 000 parametrizations of a
scenario populated by 1 000 agents moving across a random geo-
metric graph with 500 nodes and an average degree of 5, each
run spanning 10 time steps. The per-location infection rate co-
efficients and the initial infection probability were drawn from
𝑈 (0, 0.1). The recovery rate was drawn from𝑈 (0, 0.01). The slope of
the logistic function was set to 32. Figure 14 shows a histogram of
the percentage of agents attributed to a different state than in the
non-differentiable reference runs. The median deviation amounts
to 0.19% of the agents, and the 95% and 99% quantiles are 0.61%
and 0.83%, which indicates that the differentiable model closely
represents the reference model.

We also conducted an optimization experiment in which we
calibrated a simulation of 10 000 agents on a graph of 5 000 nodes
to a state trajectory across 10 steps of a randomized reference run.
Similar recent work operates on a surrogate for an original agent-
based model [4]. We summarize our results briefly: CNE, DE, and
the gradient-based methods all achieved a good fit to the reference
trajectory within the time budget of 12h. The results using CNE, DE
were somewhat superior, with about 0.7% and 1.1% misattributed
agent states, compared to between 1.9% and 2.2% using the gradient-
based methods. For comparison, the solutions identified by SPSA
and SA misattributed 23.0% and 25.3% of the states.

Session 1: Machine Learning and Simulation SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

35

6 LIMITATIONS AND RESEARCH
DIRECTIONS

Our experiments show the viability of differentiable agent-based
simulation and its benefit in several simulation-based optimization
problems. Still, a number of avenues remains to be explored, the
main focal points being the fidelity and performance of the differ-
entiable models and the applicability of the approach by model
domain experts and in the context of machine learning.

Fidelity: Most of the presented building blocks rely on approxi-
mations using the logistic function, the error being adjusted by a
slope parameter. The configuration of the slope involves a tradeoff:
with steep slopes, the logistic function closely approximates a step
function. However, negative or positive arguments with sufficiently
large magnitude quickly approach 0 or 1, respectively. Similar to
the vanishing gradient problem in machine learning [30], the re-
sulting small gradients may lead to a sluggish optimization. On the
other hand, with shallow slopes, arguments close to zero yield large
deviations from the original step function. An important direction
for future work lies in determining model-specific error bounds
based on known bounds for the building blocks (e.g., [45]), and on
the detection and potential correction of artifacts.

Performance: We have seen that the overhead of the differ-
entiable model variants is substantial, limiting their applicability
for large scenarios. One of the causes is the implementation of
branching: in effect, the operations of all possible branches are exe-
cuted. While we showed that the combination of non-differentiable
and differentiable model elements can limit the overhead, a key
challenge lies in identifying for which model aspects gradient in-
formation is required. For instance, in the scalable traffic model
variants, the impact of variations in the simulation input on lane
changes are not captured in the computed gradients.

If an optimization targets the steady-state behavior of a model,
some overhead could be avoided by first executing a fast non-
differentiable implementation. Once a steady state has been reached,
the simulation state is used to initialize a differentiable implemen-
tation using which the output and gradient are computed.

The memory consumption may potentially be reduced by form-
ing so-called super nodes [47]: first, groups of operations are iden-
tified that are repeatedly executed. Then, by manually defining an
operation that represents the contribution of an entire group to the
partial derivatives, the gradient computation is simplified. In agent-
based simulations, sequences of operations executed for every agent
and at every time step may be candidates for super-nodes.

Finally, the convergence speed and solution quality of simulation-
based optimizations could be improved by combining gradient-free
and gradient-based optimization methods. For instance, a gradient-
free approach such as a genetic algorithm could identify promising
areas in the parameter space, within which a local optimum is then
identified using a gradient-based method [26, 34].

Applicability: The models presented in Section 4 were imple-
mented manually, which, despite our relatively simple models,
proved to be somewhat cumbersome and error-prone. Automatic
translations could support more convenient development processes.
Recent efforts aim to define differentiable general-purpose program-
ming languages (e.g. [57]). Domain-specific languages defined in a
similar vein could cater to agent-based modeling experts.

Some recent research aims at integrating differentiable pro-
gramming facilities into machine learning frameworks such as Py-
Torch [41]. Implementing differentiable agent-based models within
such frameworkswould enable an efficient unification of simulation-
based optimization and neural network training, making use of the
frameworks’ optimized GPU-based implementations of neural net-
works and automatic differentiation while accelerating the model
execution through fine-grained many-core parallelism [64, 65].

7 RELATEDWORK
Approximate computing techniques carry out computations at re-
duced fidelity, e.g., by scaling the numerical precision or by relying
on neural network-based function approximation [49]. Often, the
intention is to reduce the computational cost, to increase resilience
to errors, or to solve problems for which an exact solution is not
known. In contrast to these aims, the goal of our approximations is
to allow automatic differentiation to extract gradient information.
In the context of machine learning, there is currently intensive
research towards approximate differentiable algorithms for prob-
lems such as sorting [8, 15, 25] and path finding [61]. In future
work, we plan to build on such approximate algorithms to express
increasingly complex agent behavior in a differentiable manner.

Some existing works propose methods to enable the gradient-
based optimization of simulations. In Infinitesimal Perturbation
Analysis (IPA) [29] and Smoothed IPA [23], gradient expressions
are derived through an analysis of the given model. While IPA
can yield computations similar to those carried out by automatic
differentiation, the IPA literature derives model-specific gradient
estimators manually (e.g., [13, 22, 33]), which is limited to rela-
tively simple models. In contrast, automatic differentiation allows
gradients to be computed directly from model implementations in
general-purpose programming languages.

Smooth interpretation [12] is a method that aims to achieve dif-
ferentiability for general programs. The program input is supplied
in the form of Gaussian random variables and propagated through
a symbolic execution of the program, approximating the resulting
complex distributions by combinations of Gaussian distributions
based on rules defined in a smoothed semantics. The approach con-
stitutes a potential alternative to our construction of differentiable
model implementations based on a set of smooth building blocks.
An exploration of the overhead of smooth interpretation and its
ability to accurately capture the logic of agent-based models is a
potential avenue for future work.

Considering existing research adjacent to agent-based simula-
tion, a recent work proposes a continuous approximation of cellu-
lar automata (CAs) to enable gradient-based search for CAs with
desired properties [48]. As in IPA, expressions for the partial deriva-
tives are determined manually. Finally, Kreiss et al. outlined prelim-
inary work towards the use of automatic differentiation to calibrate
Helbing’s Social Force model for pedestrian dynamics [27] against
real-world data [44]. Since the Social Force model is specified with
respect to continuous time and space, it is a natural candidate for
automatic differentiation. These works share our goal of enabling
gradient-based optimization, but rely on specific model proper-
ties and do not propose more general building blocks to construct
differentiable agent-based simulations.

Session 1: Machine Learning and Simulation SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

36

8 CONCLUSIONS
Simulation-based optimization of agent-based models with large
numbers of inputs is usually carried out either on surrogate mod-
els, which typically abandon the individual-based level of detail of
an original model, or using gradient-free methods such as genetic
algorithms. To enable direct gradient-based optimization of agent-
based models, we proposed the construction of differentiable imple-
mentations using smooth building blocks, enabling an automatic
computation of the partial derivatives reflecting the sensitivity of
the simulation output to the inputs.

Our evaluation on the example of three variants of a road traffic
model and an epidemics model was driven by the question whether
gradient-based optimization using differentiable models can outper-
form gradient-free methods. By constructing models from combi-
nations of differentiable and non-differentiable model elements, we
achieved sufficient performance to tackle scenarios populated by
thousands of agents. Comparing the relative solution quality and
convergence speed of gradient-based and gradient-free methods in
simulation-based optimization experiments, we observed that the
gradient-based methods in fact achieved better results in several
cases. Particularly vast margins were observed in problems with
large input dimension, which indicates that the approach could ex-
tend the reach of simulation-based optimization using agent-based
models to problems that could previously only be tackled via surro-
gate modeling at a reduced level of detail. As an additional benefit
of the approach, we demonstrated that neural network-controlled
simulation entities embedded into the differentiable model logic
can efficiently be trained using gradient-based methods, with sub-
stantially superior results over gradient-free methods.

Promising research directions lie in reducing the overhead of
differentiable simulations, in providing language support for ex-
pressing differentiable models in a natural way, and in model im-
plementations targeting machine learning frameworks.

ACKNOWLEDGMENT
Financial support was provided by the Deutsche Forschungsge-
meinschaft (DFG) research grant UH-66/15-1 (MoSiLLDe).

We extend our thanks to Matteo Principe and Emilio Incerto for
their dedication and diligence in reproducing our results.

REFERENCES
[1] Philipp Andelfinger, Jordan Ivanchev, David Eckhoff, Wentong Cai, and Alois

Knoll. 2019. From Effects to Causes: Reversible Simulation and Reverse Explo-
ration of Microscopic Traffic Models. In Proceedings of the 2019 ACM SIGSIM
Conference on Principles of Advanced Discrete Simulation. 173–184.

[2] Philipp Andelfinger, Yadong Xu, David Eckhoff, Wentong Cai, and Alois Knoll.
2020. Fidelity and Performance of State Fast-Forwarding in Microscopic Traffic
Simulations. ACM Transactions on Modeling and Computer Simulation 30, 2,
Article 10 (April 2020), 26 pages. https://doi.org/10.1145/3366019

[3] Joel Andersson, Johan Åkesson, and Moritz Diehl. 2012. CasADi: a symbolic
package for automatic differentiation and optimal control. In Recent advances in
algorithmic differentiation. Springer, 297–307.

[4] Rushil Anirudh, Jayaraman J Thiagarajan, Peer-Timo Bremer, Timothy C Ger-
mann, Sara Y Del Valle, and Frederick H Streitz. 2020. Accurate calibration
of agent-based epidemiological models with neural network surrogates. arXiv
preprint arXiv:2010.06558 (2020).

[5] Atılım Günes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. 2017. Automatic differentiation in machine learning: a
survey. The Journal of Machine Learning Research 18, 1 (2017), 5595–5637.

[6] Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. 2011.
SUMO–simulation of urban mobility: an overview. In Proceedings of SIMUL 2011,
The Third International Conference on Advances in System Simulation. ThinkMind.

[7] Shikhar Bhardwaj, Ryan R Curtin, Marcus Edel, Yannis Mentekidis, and Con-
rad Sanderson. 2018. ensmallen: a flexible C++ library for efficient function
optimization. arXiv preprint arXiv:1810.09361 (2018).

[8] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. 2020. Fast
differentiable sorting and ranking. arXiv preprint arXiv:2002.08871 (2020).

[9] Eric Bonabeau. 2002. Agent-based modeling: methods and techniques for simu-
lating human systems. Proceedings of the National Academy of Sciences 99, suppl
3 (2002), 7280–7287.

[10] Benoît Calvez and Guillaume Hutzler. 2005. Automatic tuning of agent-based
models using genetic algorithms. In International Workshop on Multi-Agent Sys-
tems and Agent-Based Simulation. Springer, 41–57.

[11] Yolanda Carson and Anu Maria. 1997. Simulation optimization: methods and
applications. In Proceedings of the 29th Winter Simulation Conference. 118–126.

[12] Swarat Chaudhuri and Armando Solar-Lezama. 2010. Smooth interpretation.
ACM Sigplan Notices 45, 6 (2010), 279–291.

[13] Min Chen, Jian-Qiang Hu, and Michael C Fu. 2010. Perturbation analysis of a
dynamic priority call center. IEEE transactions on automatic control 55, 5 (2010),
1191–1196.

[14] John D Cook. 2011. Basic properties of the soft maximum. (2011).
[15] Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. 2019. Differentiable ranking

and sorting using optimal transport. In Advances in Neural Information Processing
Systems. 6861–6871.

[16] Sina Dabiri and Montasir Abbas. 2016. Arterial traffic signal optimization using
particle swarm optimization in an integrated VISSIM-MATLAB simulation envi-
ronment. In 2016 IEEE 19th International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 766–771.

[17] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and
J Zico Kolter. 2018. End-to-end differentiable physics for learning and control.
Advances in Neural Information Processing Systems 31 (2018), 7178–7189.

[18] Jonas Degrave, Michiel Hermans, Joni Dambre, et al. 2019. A differentiable
physics engine for deep learning in robotics. Frontiers in Neurorobotics 13 (2019),
6.

[19] Timothy Dozat. 2016. Incorporating Nesterov Momentum into Adam. In Pro-
ceedings of 4th International Conference on Learning Representations, Workshop
Track.

[20] J. David Eckman and Shane G. Henderson. 2020. Biased gradient estimators in
simulation optimization. In Proceedings of the Winter Simulation Conference.

[21] Martin Fellendorf and Peter Vortisch. 2010. Microscopic traffic flow simulator
VISSIM. In Fundamentals of Traffic Simulation. Springer, 63–93.

[22] Yanfeng Geng and Christos G Cassandras. 2012. Multi-intersection traffic light
control using infinitesimal perturbation analysis. IFAC Proceedings Volumes 45,
29 (2012), 104–109.

[23] Wei-Bo Gong and Yu-Chi Ho. 1987. Smoothed (conditional) perturbation analysis
of discrete event dynamical systems. IEEE Trans. Automat. Control 32, 10 (1987),
858–866.

[24] Andreas Griewank, David Juedes, and Jean Utke. 1996. Algorithm 755: ADOL-C:
a package for the automatic differentiation of algorithms written in C/C++. ACM
Transactions on Mathematical Software (TOMS) 22, 2 (1996), 131–167.

[25] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. 2019. Stochastic
optimization of sorting networks via continuous relaxations. arXiv preprint
arXiv:1903.08850 (2019).

[26] Ken Harada, Kokolo Ikeda, and Shigenobu Kobayashi. 2006. Hybridization of
genetic algorithm and local search in multiobjective function optimization: rec-
ommendation of GA then LS. In Proceedings of the 8th annual Conference on
Genetic and Evolutionary Computation. 667–674.

[27] Dirk Helbing and Peter Molnar. 1995. Social force model for pedestrian dynamics.
Physical review E 51, 5 (1995), 4282.

[28] Adrián Hernández and José M Amigó. 2019. Differentiable programming and its
applications to dynamical systems. arXiv preprint arXiv:1912.08168 (2019).

[29] Yu-Chi Ho and Christos Cassandras. 1983. A new approach to the analysis of
discrete event dynamic systems. Automatica 19, 2 (1983), 149–167.

[30] Sepp Hochreiter. 1998. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems 6, 02 (1998), 107–116.

[31] Robin J Hogan. 2014. Fast reverse-mode automatic differentiation using expres-
sion templates in C++. ACM Transactions on Mathematical Software (TOMS) 40, 4
(2014), 1–16.

[32] L Jeff Hong and Barry L Nelson. 2009. A brief introduction to optimization via
simulation. In Proceedings of the 2009 Winter Simulation Conference (WSC). IEEE,
75–85.

[33] William Casey Howell. 2006. Simulation optimization of traffic light signal timings
via perturbation analysis. Ph.D. Dissertation. University of Maryland.

[34] Xiaolin Hu, Zhangcan Huang, and Zhongfan Wang. 2003. Hybridization of
the multi-objective evolutionary algorithms and the gradient-based algorithms.
In The 2003 Congress on Evolutionary Computation, 2003. CEC’03., Vol. 2. IEEE,
870–877.

[35] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan
Ragan-Kelley, and Frédo Durand. 2019. Difftaichi: differentiable programming

Session 1: Machine Learning and Simulation SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

37

https://doi.org/10.1145/3366019

for physical simulation. arXiv preprint arXiv:1910.00935 (2019).
[36] Mike Innes, Alan Edelman, Keno Fischer, Chris Rackauckus, Elliot Saba, Viral B

Shah, and Will Tebbutt. 2019. Zygote: a differentiable programming system to
bridge machine learning and scientific computing. arXiv preprint arXiv:1907.07587
(2019), 140.

[37] June Young Jung, Gary Blau, Joseph F Pekny, Gintaras V Reklaitis, and David
Eversdyk. 2004. A simulation based optimization approach to supply chain
management under demand uncertainty. Computers & Chemical Engineering 28,
10 (2004), 2087–2106.

[38] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. 1996. Rein-
forcement learning: A survey. Journal of Artificial Intelligence Research 4 (1996),
237–285.

[39] William Ogilvy Kermack and Anderson G McKendrick. 1927. A contribution to
the mathematical theory of epidemics. Proceedings of the Royal Society of London.
Series A 115, 772 (1927), 700–721.

[40] Arne Kesting, Martin Treiber, and Dirk Helbing. 2007. General lane-changing
model MOBIL for car-following models. Transportation Research Record 1999, 1
(2007), 86–94.

[41] Nikhil Ketkar. 2017. Introduction to PyTorch. In Deep Learning with Python.
Springer, 195–208.

[42] Diederik P Kingma and Jimmy Ba. 2014. Adam: a method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[43] Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. 1983. Optimization by
simulated annealing. Science 220, 4598 (1983), 671–680.

[44] Sven Kreiss and Alexandre Alahi. 2019. Automatic differentiation in Social Force
models. Poster. European Association for Research in Transportation (hEART).
http://infoscience.epfl.ch/record/261038

[45] Nikolay Kyurkchiev and SvetoslavMarkov. 2015. Sigmoid functions: some approx-
imation and modelling aspects. LAP LAMBERT Academic Publishing, Saarbrücken
(2015).

[46] Charles M Macal. 2010. To agent-based simulation from system dynamics. In
Proceedings of the 2010 Winter Simulation Conference. IEEE, 371–382.

[47] Charles CMargossian. 2019. A review of automatic differentiation and its efficient
implementation. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 9, 4 (2019), e1305.

[48] Carlos Martin. 2017. Differentiable cellular automata. arXiv preprint
arXiv:1708.09546 (2017).

[49] Sparsh Mittal. 2016. A Survey of Techniques for Approximate Computing. ACM
Computing Surveys (CSUR) 48, 4 (2016), 1–33.

[50] David J Montana and Lawrence Davis. 1989. Training feedforward neural net-
works using genetic algorithms.. In IJCAI, Vol. 89. 762–767.

[51] Carolina Osorio and Linsen Chong. 2015. A computationally efficient simulation-
based optimization algorithm for large-scale urban transportation problems.
Transportation Science 49, 3 (2015), 623–636.

[52] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty
of training recurrent neural networks. In International Conference on Machine

Learning. PMLR, 1310–1318.
[53] Kalyan S Perumalla and Richard M Fujimoto. 1999. Source-code transformations

for efficient reversibility. Technical Report. Georgia Institute of Technology.
[54] Christopher Rackauckas, Yingbo Ma, Vaibhav Dixit, Xingjian Guo, Mike Innes,

Jarrett Revels, Joakim Nyberg, and Vijay Ivaturi. 2018. A comparison of automatic
differentiation and continuous sensitivity analysis for derivatives of differential
equation solutions. arXiv preprint arXiv:1812.01892 (2018).

[55] Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747 (2016).

[56] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning
representations by back-propagating errors. Nature 323, 6088 (1986), 533–536.

[57] Amir Shaikhha, Andrew Fitzgibbon, Dimitrios Vytiniotis, Simon Peyton Jones,
and Christoph Koch. 2018. Efficient differentiable programming in a functional
array-processing language. arXiv preprint arXiv:1806.02136 (2018).

[58] Emil I Sluşanschi and Vlad Dumitrel. 2016. ADiJaC–Automatic differentiation of
Java classfiles. ACM Transactions on Mathematical Software (TOMS) 43, 2 (2016),
1–33.

[59] James C Spall et al. 1992. Multivariate stochastic approximation using a simulta-
neous perturbation gradient approximation. IEEE Trans. Automat. Control 37, 3
(1992), 332–341.

[60] Rainer Storn and Kenneth Price. 1995. DE-a simple and efficient adaptive scheme
for global optimization over continuous space. Technical Report 6. 95–102 pages.

[61] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. 2016.
Value iteration networks. arXiv preprint arXiv:1602.02867 (2016).

[62] Tommaso Toffoli. 1980. Reversible computing. In International Colloquium on
Automata, Languages, and Programming. Springer, 632–644.

[63] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. 2000. Congested traffic
states in empirical observations and microscopic simulations. Physical Review E
62, 2 (February 2000), 1805–1824.

[64] Jiajian Xiao, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois Knoll.
2018. Exploring execution schemes for agent-based traffic simulation on heteroge-
neous hardware. In 2018 IEEE/ACM 22nd International Symposium on Distributed
Simulation and Real Time Applications (DS-RT). IEEE, 1–10.

[65] Jiajian Xiao, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois Knoll.
2019. A survey on agent-based simulation using hardware accelerators. ACM
Computing Surveys (CSUR) 51, 6 (2019), 1–35.

[66] Sadik Yigit and Beliz Ozorhon. 2018. A simulation-based optimization method for
designing energy efficient buildings. Energy and Buildings 178 (2018), 216–227.

[67] Srikanth B Yoginath and Kalyan S Perumalla. 2009. Reversible discrete event
formulation and optimistic parallel execution of vehicular traffic models. Inter-
national Journal of Simulation and Process Modelling 5, 2 (2009), 104–119.

[68] Milad Yousefi, Moslem Yousefi, and Flavio S Fogliatto. 2020. Simulation-based
optimization methods applied in hospital emergency departments: a systematic
review. Simulation 96, 10 (2020), 791–806.

[69] Lihui Zhang, Yafeng Yin, and Shigang Chen. 2013. Robust signal timing opti-
mization with environmental concerns. Transportation Research Part C: Emerging
Technologies 29 (2013), 55–71.

Session 1: Machine Learning and Simulation SIGSIM-PADS ’21, May 31–June 2, 2021, Virtual Event, USA

38

http://infoscience.epfl.ch/record/261038

	Abstract
	1 Introduction
	2 Automatic Differentiation
	3 Differentiable Agent-Based Simulation
	3.1 Conditional Execution and Branching
	3.2 Iteration
	3.3 Selection of Interaction Partners
	3.4 Time-Dependent Behavior
	3.5 Stochasticity

	4 Model Implementation
	4.1 Microscopic Traffic Simulation
	4.2 Epidemics Model on a Graph

	5 Experiments
	5.1 Single Multi-Lane Road
	5.2 Grid Network with Static Signal Timings
	5.3 Grid Network with Neural Network-Controlled Signals
	5.4 Epidemics Model on a Graph

	6 Limitations and Research Directions
	7 Related Work
	8 Conclusions
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 328.44, 734.71 Width 235.83 Height 25.78 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 328.4438 734.7133 235.8303 25.7791

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 12
 0
 1

 1

 HistoryList_V1
 qi2base

