
From Effects to Causes: Reversible Simulation and
Reverse Exploration of Microscopic Traffic Models

Philipp Andelfinger

TUMCREATE Ltd and

Nanyang Technological University

pandelfinger@ntu.edu.sg

Jordan Ivanchev

TUMCREATE Ltd

jordan.ivanchev@tum-create.edu.sg

David Eckhoff

TUMCREATE Ltd and

Technische Universität München

david.eckhoff@tum-create.edu.sg

Wentong Cai

Nanyang Technological University

aswtcai@ntu.edu.sg

Alois Knoll

Technische Universität München and

Nanyang Technological University

knoll@in.tum.de

ABSTRACT
We propose an approach for reverse-in-time exploration of the

state space of microscopic traffic simulations starting from a user-

specified class of outcomes. As a basis for our approach, we present

a reversible execution scheme applicable to common car-following

and lane-changing models from the traffic simulation literature.

The execution scheme permits perfect reversal of a previous for-

ward simulation, which to our knowledge has not been attempted

previously in the context of established traffic simulation models.

Further, we perform reverse state space explorations directly from

user-specified simulation states, i.e., reverse-in-time model check-

ing. By exploring all sequences of possible previous states from a

final state, reachability questions can be answered more conclu-

sively than purely through forward simulations. In a case study,

reverse exploration is used to identify conditions that lead to speci-

fied accident situations, with running time reductions by factors of

more than 20 compared to traditional forward exploration.

ACM Reference Format:
PhilippAndelfinger, Jordan Ivanchev, David Eckhoff,WentongCai, andAlois

Knoll. 2019. From Effects to Causes: Reversible Simulation and Reverse Ex-

ploration of Microscopic Traffic Models. In SIGSIM Principles of Advanced
Discrete Simulation (SIGSIM-PADS ’19), June 3–5, 2019, Chicago, IL, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3316480.3322891

1 INTRODUCTION
Microscopic traffic simulation, which represents vehicles as indi-

vidual entities, is an established approach to evaluate scenarios

in transportation planning and traffic engineering. Often, simula-

tion studies take the form of a “what if” analysis: given the initial

traffic conditions, a simulation run is executed. By repeating the

simulation for different starting conditions, statistical results can

be obtained. This approach is suitable when studying aggregated

metrics such as vehicle flows at main roads or mean travel times.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6723-3/19/06. . . $15.00

https://doi.org/10.1145/3316480.3322891

Initial states Reachable states

Critical
states

Simulation run

(a) Forward simulations: initial conditions are sampled from the space
of initial simulation states to identify state trajectories ending in a
critical state.

Initial states Reachable states

Critical
states

xx

x

x
x

x

(b) Reverse exploration: the reachable previous states are explored in
reverse directly from the critical states. Unreachable states (signified
by an x) are discarded.

Figure 1: Schematic view of a reachability analysis through
forward simulations and reverse exploration.

If we are interested in the reachability of critical final simulation

states, e.g., accidents or traffic jams, repeated simulation runs can be

performed until a critical state has been reached or a sufficient level

of confidence is achieved that such a state is unreachable [37, 42].

However, given the vast input state space of most simulations, this

approach will rarely suffice to gather definite reachability results.

In the present paper, we propose an approach to enable reverse-

in-time state space explorations of microscopic traffic simulations.

From a user-specified simulation state, all possible previous simula-

tion states are explored to conclusively answer reachability ques-

tions and to determine initial states leading to the configured out-

come (cf. Figure 1). Thus, the approach enables a reverse model

checking of microscopic traffic simulation models. As a basis for the

approach, we first present an execution scheme that enables per-

fect reverse execution of forward simulation runs. While existing

Session on Modeling Methodology SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

173

https://doi.org/10.1145/3316480.3322891
https://doi.org/10.1145/3316480.3322891
https://www.acm.org/publications/policies/artifact-review-badging#reusable
https://www.acm.org/publications/policies/artifact-review-badging#available
https://www.acm.org/publications/policies/artifact-review-badging#replicated

works have proposed reversible simulation models for traffic simu-

lation [44] with the aim of supporting optimistic parallel execution,

to our knowledge we are the first to present a reversible simulation

scheme applicable to microscopic car-following and lane-changing

models that are well-accepted and commonly used in the traffic

engineering literature.

Our main contributions are as follows:

• We propose an approach for perfect reverse execution of

microscopic traffic simulations.

• We propose a reverse-in-time exploration scheme that en-

ables state space exploration of traffic models.

• We evaluate the memory consumption and performance of

the proposed approaches and present a case study of the

reverse exploration.

Our prototypical implementation is publicly available
1
.

The remainder of the paper is structured as follows: In Section 2,

we outline the considered traffic models as well as concepts funda-

mental to our approach. Sections 3 and 4 describes our proposed

approaches for reversible simulation and reverse exploration. In

Section 5, we evaluate the performance and scalability of our pro-

totypical implementation. In Section 6, we apply the reverse explo-

ration scheme to study the reachability of critical traffic situations.

In Section 7, we discuss limitations and future work. In Section 8, we

relate our work to existing approaches from the literature. Section 9

summarizes our results and concludes the paper.

2 FUNDAMENTALS
In the following, we first introduce the microscopic traffic simula-

tion models used to demonstrate our approach and discuss the use

of microscopic traffic simulation in the context of safety studies.

Further, we briefly outline the concepts of reversible computing.

2.1 Microscopic traffic simulation
In microscopic traffic simulation, road traffic is modeled on the

level of individual vehicles. Typically, two models are applied at

each time step of size τ based on the state of the currently exam-

ined vehicle (ego vehicle) and neighboring vehicles: a car-following

model updates the vehicle’s velocity, and a lane-changing model

determines whether the vehicle changes to one of the adjacent

lanes. The car-following model considered in the present paper is

the Intelligent Driver Model (IDM) [34]. The model is specified as

a differential equation in continuous time. In practice, numerical

integration is applied to solve the differential equation over dis-

cretized time. We describe the model with respect to the forward

Euler scheme for integration. The IDM takes the following form:

v̇[n] = a

(
1 −

(
v[n]

v0

)
4

−
*...
,

s0 +v[n]T +

v[n](v[n]−v
leader

[n])
2

√
ab

p
leader

[n] − p[n]

+///
-

2)
where a, b, s0,v0,T are model parameters. p

leader
andv

leader
are the

position and velocity of the vehicle ahead (leader). Using v̇[n], a

state update from time step n to n + 1 is carried out using v[n + 1] =

v[n] + v̇[n]τ and p[n + 1] = p[n] +v[n + 1]τ .

1
https://doi.org/10.5281/zenodo.2591930

https://github.com/pandelfinger/ReversibleTrafficSim

The MOBIL lane-changing model [15] used in the present paper

places the vehicle in the hypothetical situation of already being

on the candidate lane and evaluates the utility u of this situation.

It also considers the utilities experienced by other vehicles on the

road, weighted by a politeness factor π ∈ R : π ∈ [0, 1]. The

utility of the ego vehicle being on an adjacent lane is defined as:

u =
˜̇v − v̇ + π

(
˜̇v
f
h − v̇

f
h +

˜̇v
f
c − v̇

f
c

)
−∆a

th
, where ∆a

th
is the utility

improvement threshold that must be exceeded for a vehicle to per-

form a lane change, v̇
f
c and v̇

f
h are the accelerations of the current

and hypothetical follower, and a tilde represents the acceleration if

the ego vehicle were to be placed on the respective adjacent lane.

The accelerations of the vehicles are computed according to the

IDM. The utilities of the possible lane changes are compared and

the option with the highest positive utility is chosen.

2.2 Traffic simulation for safety analysis
Traffic simulations can be performed on various levels of modeling

detail. The most detailed simulations include sophisticated mod-

els of aspects such as vehicle physics and sensor inputs, whereas

less detailed simulations consider vehicles in aggregate in the form

of queuing networks or fluid equations. Multi-fidelity safety as-

sessment frameworks make use of models on a spectrum of detail

levels [31]. Since microscopic simulation still considers vehicles

individually, it can be considered the highest level of abstraction

still meaningful for safety analysis. The approach for reverse-in-

time state space exploration of the present paper targets a safety

analysis using microscopic traffic simulation. While on the consid-

ered level of detail, the behavior generated by the car-following

and lane-changing models cannot reflect complex real-world condi-

tions, we argue that the model detail is sufficient to study high-level

strategies for lane-changing, distance-keeping, and platooning.

2.3 Reversible computing
Reversible computing is concerned with the efficient reversed exe-

cution of computational tasks, motivated by use cases with benefits

in energy efficiency, failure tolerance, and performance. An intro-

duction to the field is given in [24]. While for some operations,

such as the addition of a constant value to a variable, a unique

reverse operation can be found, many operations such as XOR

are inherently destructive: if the underlying function is not injec-

tive, multiple elements of the domain map to the same value of

the codomain, so that a unique reversal must rely on additional

information for disambiguation. A common solution from the lit-

erature is to embed the original function in a new function with

an extended domain. So-called garbage bits hold the information

required to disambiguate among the domain elements. The problem

of efficiently determining minimal embeddings is subject of active

research (e.g., [47]), typically targeting functions represented as

logic tables. Thus, a constant number of output bits is commonly

assumed. In the present paper, we define an embedding for the

function determining the velocity of vehicles. A variable number of

outputs bits is used to store the minimum number of bits required

for disambiguation of each function invocation.

Session on Modeling Methodology SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

174

https://doi.org/10.5281/zenodo.2591930
https://github.com/pandelfinger/ReversibleTrafficSim

3 REVERSIBLE SIMULATION SCHEME
In the following, we propose an execution scheme supporting per-

fect reversal of microscopic traffic simulations. Our main ideas can

be summarized as follows:

(1) Number representation: Due to the numerical issues aris-

ing from a floating point representation of velocities and

positions, we quantize the velocity function using a fixed-

point number representation.

(2) Transition tables: From the quantized velocity function,

we create an embedding that supports perfect reversal. For-

ward and backward transition tables define mappings that

enable vehicle state updates forward and backward in time.

The table size is independent of the number of vehicles and

is constant over the course of the simulation. The reliance on

transition tables allows us to support arbitrary car-following

models in a generic manner. For disambiguation of transi-

tions, vehicle updates append zero or more garbage bits to

a last in, first out data structure. In Section 4, the transition

tables will form the basis of our proposed reverse state space

exploration scheme.

(3) Encoding of lane changes: A simple encoding scheme is

presented to compactly store lane-changing decisions for

reverse execution.

3.1 Number representation
To achieve a reversible simulation, it must be possible to determine

from the state of the simulation at time n + 1 the state at time step

n. It is known that a floating point number representation poses

challenges to reversibility [24]. In the following, we show that in the

considered problem, a representation of positions and velocities as

IEEE 754 floating point numbers does not permit a perfect reversal

of vehicle state updates. We assume that during forward simulation,

the position change of a vehicle from time step n to n + 1 depends

only on the velocity v[n + 1]. This assumption is satisfied by the

forward Euler scheme: p[n + 1] = p[n] + v[n + 1]τ . Suppose that
during a reverse simulation p[n + 1] and v[n + 1] are known. Now,

we should be able to simply compute p[n] = p[n + 1] − v[n + 1]τ .
However, since floating point arithmetic is not associative [10], it is

possible that (a+b)+c ̸= a+(b +c). By setting a = p[n], b = v[n+1]τ ,
and c = −v[n + 1]τ , we see that the following inequality may be

satisfied:

(p[n] +v[n + 1]τ) −v[n + 1]τ ̸= p[n] + (v[n + 1]τ −v[n + 1]τ)

which simplifies to p[n + 1] − v[n + 1]τ ̸= p[n]. Thus, even if the

velocity is known with perfect precision, the previous position

cannot always be recovered exactly.

To still achieve perfect reversibility, we rely on a fixed point

number representation. A fixed spacing between two adjacent num-

bers across the representable range enables associative arithmetic

operations. Our implementation relies on the fixed point arithmetic

library libfixmath
2
. Numbers are represented by 32 bits, with 16

bits each for the integer and decimal value, allowing us to represent

numbers between -32,768 and +32,768 with 65,536 decimal levels.

2
https://code.google.com/archive/p/libfixmath/

Table 1: Forward transition table with example entries. Dis-
ambiguation through a garbage value д is needed for transi-
tions with identical vleader[n], ∆p[n], and v[n + 1].

v[n] v
leader

[n] ∆p[n] v[n + 1] д
0 0 0 0 0

5 0 0 0 1

10 0 0 0 2

0 5 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Table 2: Backward transition table with entries correspond-
ing to the forward table above.

v[n] v
leader

[n − 1] ∆p[n − 1] д v[n − 1]
0 0 0 0 0

0 0 0 1 5

0 0 0 2 10

0 5 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3.2 Transition tables
Given the position p[n + 1] and velocity of a vehicle v[n + 1] at

time step n + 1 on a single-lane road, we are able to compute the

previous positionp[n]. Themain challenge of the reverse simulation

is to compute the previous velocity v[n]. The velocity function f
of a car-following model relates a vehicle’s new velocity to its

old velocity, its distance ∆p to a leading vehicle, and the leading

vehicle’s velocity: v[n + 1] = f (v[n],v
leader

[n],∆p[n]). A natural

approach to the reversal is to use this relationship to determine a

function r with v[n] = r (v[n + 1],v
leader

[n],∆p[n]).

Using the function r , we could reverse the transitions of vehicles
on a lane step by step starting from the first vehicle on the road,

for which we would set v
leader

[n] = 0 and ∆p[n] = ∞. However,

since velocities may be reachable from multiple situations, it may

not be possible to determine a function r of the form above. For

instance, the velocity function f of the IDM car-following model

in its most common parametrization is a fourth degree polynomial.

Thus, there may be up to four possible solutions to the equation

f (v[n],v
leader

[n],∆p[n]) − v[n + 1] = 0, allowing for up to four

possible previous velocities. We carried out numerical experiments

and observed up to two possible previous velocities. While in some

cases, only one previous velocity was plausible, e.g., non-negative,

model knowledge would be required to formulate criteria for select-

ing the correct previous velocity. To construct a general approach

to reversible execution of car-following transitions, we extend the

definition of f and r by a variable number of garbage bits per

argument combination. A forward transition now yields a tuple

(v[n+1],д[n+1]) comprised of the new velocity and a variable num-

ber of bits for disambiguation. A backward transition is executed

using v[n] = r (v[n + 1],v
leader

[n],∆p[n],д[n + 1]).

Of course, it would be possible to rely purely on the garbage bits

to encode the chosen forward transition. However, since our aim

is to minimize the number of garbage bits per step, we rely on all

available state information at [n + 1] to minimize ambiguity. Thus,

Session on Modeling Methodology SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

175

https://code.google.com/archive/p/libfixmath/

g1,1
tsim 0=

g1,n1 g2,1 ... g2,n2 g3,1 ... g3,n3
τ 2τ 3τ

Figure 2: Encoding of garbage bits for a single car-following
event. Each forward transitions appends zero or more bits
for disambiguation.

instead of encoding the entire transition, the garbage bits serve

only to disambiguate among those forward transitions leading to

the same combination of v[n + 1], v
leader

[n], and ∆p[n].

During the forward and reverse simulation, we represent f and

r as lookup tables from which transitions are chosen according

to the vehicle states at each time step. Tables 1 and 2 show the

forward and reverse transitions tables. We separately store the

number of ambiguous transitions for each combination of v[n + 1],

v
leader

[n], and∆p[n]. The size of the transition tables is independent

of the number of vehicles and remains constant over the course

of a simulation run. It does, however, depend on the chosen level

of granularity in the representation of velocities and positions.

In Section 5, we evaluate this relationship and the effect of the

granularity on the ambiguity of forward transitions.

Figure 2 illustrates the storage of garbage bits for car-following:

each vehicle holds a dynamically sized last-in, first-out structure

of garbage bits. During forward simulation, zero or more bits are

appended according to the number of ambiguous transitions. Given

m ambiguous transitions at time step i , we store ni = ⌈log
2
(m)⌉ bits.

At each step of the reverse simulation, the corresponding number

of bits is read to determine the correct backward transition.

3.3 Encoding of lane changes
A trivial scheme to enable the reversal of lane-changing decisions

would rely on 2 bits per time step to encode three possible values

representing a change to the left or right lane, or no change. We in-

stead apply a simple run-length encoding scheme similar to Golomb

coding [11]. Lane changes are stored as events comprised of a time

step and a 1-bit value representing a change to the left or right lane.

To reduce the number of bits required to represent the time step

of the lane change, we divide the simulation time into epochs of

configurable length le . It is then sufficient to store the time step

within the current epoch instead of a global time stamp. The start of

an epoch is indicated by a zero-bit. To differentiate between epoch

markers and lane-changing events, the garbage bits associated with

a lane change are succeeded by a one-bit. Figure 3 illustrates the

encoding scheme. The encoding requires 1 bit each for the lane-

change marker and lane-changing decision, and be = ⌈log
2
(le)⌉

bits for the time step within the current epoch. The expected num-

ber of garbage bits per time step and vehicle required to encode

lane changes in this fashion is given by д
lc

(be) = p
lc

(2 + be) +
1

le
.

Here, p
lc
is the probability of a lane change per time step. Assum-

ing p
lc
is known, we can determine the root r of the derivative of

д
lc
to determine the epoch length that minimizes the number of

garbage bits: r =
log 2

p
lc

. To obtain an integer number of bits, we set

be = arg minb ∈{ ⌊r ⌋, ⌈r ⌉ } дlc(b).

In Figure 4, we plot д
lc
for different lane-changing probabilities

p
lc
, comparing the optimal epoch length to a naive encoding using

2 bits per time step and fixed epoch lengths of 4, 16, and 64 steps.

10 d s1 sbe 0... ...

LC
decision

Epoch
marker Step in epoch

LC
marker

Epoch
marker

tsim 0 le 2le= τ τ

Figure 3: Encoding of garbage bits for lane-changing. Epoch
markers are used to indicate that the next epoch has been
reached.Within each epoch,be bits are used to store the time
step of a lane change.

 0

 1

 2

 3

 4

 5

 0 0.1 0.2 0.3 0.4 0.5 0.6

E
x
p

.
b

it
s
 p

e
r

ti
m

e
 s

te
p

Lane-change probability

Naive
Steps/Epoch: 64

16
4

Optimal

Figure 4: Expected number of garbage bits per time step and
vehicle depending on the lane-changing probability plc.

We can see that the epoch length has a substantial impact on the

expected number of garbage bits. A break-even point with the naive

encoding is reached at a lane-changing probability of 0.5: if a lane

change occurs at more than half of the time steps, it is more efficient

to simply store the lane-changing decision at each time step.

4 REVERSE STATE SPACE EXPLORATION
The goal of the reversible simulation scheme described above is

to execute a previous forward simulation in reverse. While the

challenge of reversibility is the ambiguity in the forward transitions,

we can instead exploit the ambiguity at each backward simulation

step to answer reachability questions. In a reverse exploration,

instead of a single “correct” backward path through the state space

of the simulation, all valid paths are explored. Moreover, a forward

simulation is not required: we can manually define the vehicle

positions and velocities in a “final” simulation state and perform

a reverse exploration from this state. The reverse exploration is

akin to reverse-in-time model checking, enabling us to determine

whether certain simulation states are reachable, and what initial

states can lead to a given final state. Case studies demonstrating

the use of the reverse exploration are described in Section 6.

Algorithm 1 shows the reverse exploration process with respect

to car-following: similarly to the reversible simulation, each step of

reverse exploration is performed front-to-back startingwith the first

vehicle on the considered lane. Instead of following the path through

the state space of a forward simulation, we explore all possible

transitions. Since each previous state of a leader vehicle may lead

to multiple previous states of its successor, reverse exploration is

a recursive procedure. It may also occur that one of the previous

states of a vehicle does not lead to any possible previous states of

its successor, i.e., there is no situation that can lead to the given

combination of positions and velocities. Every time a valid state has

Session on Modeling Methodology SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

176

Algorithm 1 Reverse exploration of one car-following step.

1: procedure ReverseExplore(currState, prevState, vehIndex)
2: veh← currState[vehIndex]

3: vCurr← veh.v

4: veh.p← veh.p - vCurr × τ
5: if vehIndex = 0 then
6: vAhead← 0

7: pAhead← ∞

8: else
9: vehAhead← currState[vehIndex - 1]

10: vAhead← vehAhead.v

11: pAhead← vehAhead.p

12: k← GetNumTransitions(veh.v, vAhead, pAhead - veh.p)

13: for s ∈ {0, 1, ..., k - 1} do
14: veh.v← GetVPrev(vCurr, vAhead, pAhead - veh.p, s)

15: prevState.push(veh)

16: if vehIndex = numVehicles - 1 then
17: StoreValidState(prevState)

18: else
19: ReverseExplore(currState, prevState, vehIndex + 1)

20: prevState.pop()

been found for the most behind vehicle on the lane, a valid overall

state prior to car-following has been determined.

Note that to limit our description of Algorithm 1 to one time

step of reverse exploration, we indicate that all valid previous states

are stored. However, to reduce the memory consumption, in our

implementation of the approach, we perform a depth-first search

in time, i.e., for each valid state at time step n we first explore the

states at n − 1 before considering the next valid state at time step n.
For each valid state before applying the car-following model, we

also determine all possible states before lane-changing. Given k
vehicles and the three possible lane-changing decisions of “left”,

“right”, and “no change”, there are a total of 3
k
possible previous

states. Of these, many states are not reachable because the vehicle

is already on one of the outer lanes of the road. Other previous

states may be unreachable through car-following. Still, the large

number of previous lane positions results in a state explosion when

exploring backward across multiple time steps. As a heuristic, it

is possible to explore the previous states in ascending order of the

number of lane changes: since lane changes are only performed

when a lane change will result in a better driving situation, it is

likely that only a few of the vehicles in a scenario perform a lane

change at a given time step. Thus, the exploration can first assume

no lane changes, then visit all possible states with one lane change,

and so forth. For each number l of lane changes, 3
k ×

(k
l

)
possible

previous states are visited. While this heuristic ordering facilitates

the identification of valid previous states, exhaustive explorations

such as the ones presented in Sections 5 and 6 must explore all

possible previous states. In Section 5.3, we evaluate the number of

states visited in an example scenario.

5 EVALUATION
Our performance evaluation covers three aspects: firstly, we study

the size of the transition lookup tables depending on the number

granularity. Secondly, we explore the memory consumption and

running time of the forward and backward simulation. Thirdly,

Table 3: Number of argument combinations, unique output
velocities, and table sizes depending on the granularity.

Granularity #Forward #Unique Total
[m], [m/s] keys backward keys table size

0.25 1,062,982 759,178 57 MiB

0.125 8,346,562 5,962,812 446 MiB

0.0625 66,152,322 47,262,261 3,533 MiB

we measure the performance of the reverse exploration to give an

indication of tractable scenario conditions and search depths. The

experiments were executed on a workstation equipped with an

Intel Core i5-7400 and 16GiB of RAM running Ubuntu 16.04.5 LTS.

5.1 Size of transition lookup tables
In the present paper, vehicles exhibit car-following behavior ac-

cording to the Intelligent Driver Model. The model determines a

vehicle’s new velocity from its current velocity, position, as well as

the distance to the leader and its velocity. The number of possible

combinations of these model arguments depends on the minimum

number increment (granularity) permitted by the number repre-

sentation. Given a granularity of i and a sensing range r , there
are (

r
i + 2) possible vehicle distances ∆p ∈ {0, i, 2i, ..., ri } ∪ {∞}.

With the maximum velocity vmax, the overall number of argument

combinations is (
vmax

i + 1)
2 × (

r
i + 2). Table 3 shows the number

of keys of the transitions tables for granularities of 0.25, 0.125, and

0.0625. For the backward transition table, we only count unique

combinations of v[n + 1], v
leader

[n], and ∆p[n]. In all cases, the

number of backward keys is about 71.4% of the number of forward

keys. If the disambiguation indices are also considered, the number

of keys of the forward and backward tables is identical.

We also list the total memory required by the forward and back-

ward transitions tables. The values given are based on the number

of argument combinations and the size of the table entries given our

fixed-point number representation. A key of the forward transition

table is comprised of the velocity of the ego vehicle, the distance to

the leader, and the velocity of the leader. A forward table value is

comprised of the new velocity and a disambiguation index. Given

that we currently rely on 32 bit variables, a key-value pair of the

forward transition table requires 5 × 4 = 20 bytes of memory. A

key and value of the backward transition table require 16 and 4

bytes, respectively. In total, givenw forward transitions, each table

requiresw × 20 bytes of memory. To be able to determine the num-

ber of garbage bits to be read at a given backward transition, an

additional table stores the number of forward transitions for each

key of the backward transition table. This table requires w × 16

bytes of memory.

In practice, the data structures used and the memory allocation

scheme of the operating system increase the memory consumption

further. In our current implementation, the measured total mem-

ory consumption after loading the tables was about 6.7 GiB at a

granularity of 0.0625. The table sizes could be reduced substantially

by using the minimum possible number of bits to represent table

entries. For instance, if there are q unique parameter combinations,

a key of the table could be represented by ⌈log
2
(q)⌉ bits. For in-

stance, only 26 bits would be required at a granularity of 0.0625

Session on Modeling Methodology SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

177

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1 2 4 8 16 32G
a

rb
a

g
e

 b
it
s
 p

e
r

ti
m

e
 s

te
p

Number of vehicles

Granularity: 0.25
0.125

0.0625

Figure 5: Number of garbage bits per time step and vehicle
depending on the number of vehicles in the scenario.

instead of the 128 bits used in our current implementation. We

leave optimization efforts to reduce the memory consumption of

the tables to future work.

The total table size increases linearly with the number of param-

eter combinations, i.e., by a factor of 2
3

= 8 when the granularity

is halved. The observed memory consumption at a granularity of

0.0625 is within the capacities of commodity workstations.

5.2 Reversible simulation
We simulated a scenario with three lanes and vehicle numbers

in {1, 2, 4, 8, 16, 32}, each vehicle being 4.5m in length. Initially,

the vehicles are placed on a random lane, and at positions chosen

uniformly at random on the first 500m of the road. Each vehicle

has a random initial velocity ≤ 20
m

s
. To increase the probability

of lane changes, 100 stationary vehicles obstructing one random

lane each are generated with random spacing drawn from [10, 50]m.

We repeated the experiment using granularities for velocities and

positions of 0.25, 0.125, and 0.0625. For each parameter combination,

10,000 simulations were executed, each for 1,000 time steps of 0.1s.

In the encoding of the garbage bits for lane-changing, we configured

an epoch length of 4 time steps.

Figure 5 shows the number of garbage bits required per time step

and vehicle to enable a reverse simulation. Between around 0.87 and

1.32 bits are needed, with the largest number of bits at 32 vehicles.

The majority of the required garbage bits are generated by the car-

following model, which for the different parameter combinations

requires an average of 0.51 to 0.97 bits per time step and vehicle.

We also observe that the granularity of positions and velocities

has only a minor effect on the number of garbage bits, with finer

granularities requiring fewer bits. A possible reason for the increase

in garbage bits with 32 vehicles is a lower average velocity: Figure 6

shows the number of unique state transitions leading to a given

velocity, covering all possible previous velocities as well as velocity

and position differences. We observe that the number of transitions

decreases with higher velocities, reducing the number of required

garbage bits.

We now compare the number of garbage bits required in our re-

versible simulation with the memory requirements of a traditional

periodic state saving approach. Given the limited number granular-

ity in our approach, an equivalent representation of velocities up

to and including 20
m

s
in a state saving approach at a granularity of

0.0625 would require ⌈log
2
(

20

0.0625
+ 1)⌉ = 9 bits. According to our

scenario parameters, we assume that there are three lanes and that

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20N
u

m
b

e
r

o
f

in
p

u
t

tr
a
n

s
it
io

n
s

Velocity [m/s]

Granularity: 0.25
0.125

0.0625

Figure 6: Number of input transitions of the Intelligent Dri-
ver Model leading to a given velocity at the next time step.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 1 2 4 8 16 32

T
im

e
 p

e
r

v
e

h
.

u
p

d
a

te
 [

µ
s
]

Number of vehicles

Granularity: 0.0625
0.125
0.25

(a) Forward simulation.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 1 2 4 8 16 32

T
im

e
 p

e
r

v
e

h
.

u
p

d
a

te
 [

µ
s
]

Number of vehicles

Granularity: 0.0625
0.125
0.25

(b) Backward simulation.

Figure 7: Wall-clock time required for a state update of one
vehicle in forward and backward simulations.

positions take on values ≤ 2500m. Then, a full vehicle state can

be represented by 9 + 2 + ⌈log
2
(

2500

0.0625
+ 1)⌉ = 27 bits. We can now

determine the number of time steps of the reversible simulation at

which the overall number of garbage bits equals the bits required

by one full state saving. Given the 0.51 to 0.97 garbage bits per step

of the reversible simulation, an equivalent memory consumption

would be reached by saving the full vehicle states after a period of

28 to 53 time steps.

To support a finer granularity, the state saving approach would

require additional bits. However, we have seen in Figure 5 that in

the reversible simulation, the number of garbage bits per time step

in fact decreases at finer granularities. Given this observation, the

main concern when aiming for finer granularities is the total size

of the lookup tables, which increases eightfold with each doubling

(cf. Table 3), but remains constant across the simulation.

Although our current implementation of the reversible simu-

lation has not been heavily optimized for performance, we also

measured the running time of the forward and backward execution.

Session on Modeling Methodology SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

178

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09
 1e+10
 1e+11

 0 1 2 3 4 5 6 7 8 9

N
u

m
b
e

r
o

f
s
ta

te
s

Time step

Visited
Valid

Figure 8: The visited and valid simulation states during re-
verse exploration of up to 10 time steps of τ = 0.1s each in a
scenario with 8 vehicles.

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1 2 4 8

N
u
m

b
e
r

o
f

s
ta

te
s

Number of vehicles

Visited

Valid

Figure 9: The average visited and valid simulation states af-
ter 10 time steps of reverse exploration depending on the
number of vehicles in the scenario.

Figure 7 shows the wall-clock running time per time step and vehi-

cle. Since there is a base overhead per simulation step, the running

time per vehicle update decreases with the number of vehicles.

With 32 vehicles, the absolute time required for one update in the

forward simulation was between 0.53 and 0.68 µs. The backward

simulation required between 0.31 and 0.48 µs per time step and is

thus substantially faster than the forward simulation. We profiled

the simulation using Google’s gperftools
3
and found that the main

cost of the forward simulation is incurred by the lane-changing

model. In addition to collecting and evaluating the states of the

ego vehicle’s neighbors on the current and adjacent lanes, the MO-

BIL lane-changing model requires up to nine invocations of the

car-following model per time step to determine the current and

projected accelerations of the current and neighboring vehicles. In

contrast, the backward simulation reverts the lane changes simply

according to the values of the garbage bits. At the considered small

numbers of vehicles, there is only a slight effect of the granularity

on the running time.

5.3 Reverse state space exploration
We carried out reverse explorations of scenarios with vehicles

placed randomly on the first 250m of a three-lane road without

stationary obstacles. From these starting conditions, we simulated

forward for 10 time steps before attempting a reverse exploration

by 10 time steps. We repeated the experiment for vehicle counts in

3
https://github.com/gperftools

{1, 2, 4, 8}, each time starting from 10 scenarios generated with a

different random number seed. The granularity was set to 0.0625.

We stress that the forward simulations are only carried out in

this performance experiment to guarantee that the reverse explo-

ration can proceed backwards by at least 10 time steps. In actual

reachability studies such as the one described in Section 6, the re-

verse exploration starts directly from user-specified final simulation

states without previous forward simulations.

Figure 8 shows the average number of visited and valid states

during the reverse exploration for 8 vehicles. We can see that the

number of states increases immensely with each additional time

step. On average, about 1.5 × 10
10

states were visited at time step 0.

Of these, an average of about 1.3×10
6
were identified as valid states

leading to the final state generated by the forward simulation.

In Figure 9, we plot the visited and valid states at time step 0

for the considered vehicle counts. The results demonstrate that

in this densely populated scenario, a state space explosion occurs

with even modest numbers of vehicles. The main reason is the

large number of possible lane changes: in less crowded scenarios,

only few opportunities for lane changes exist, strongly reducing

the number of possible previous states. Further, as we will see in

Section 6, even small-scale scenarios as the one considered here

can be sufficient to answer questions on the reachability of certain

simulation states.

With 8 vehicles in the scenario, our current sequential implemen-

tation of the reverse exploration explored around 3.7×10
6
states per

second wall-clock time. In future work, a parallelization across the

independent paths in the state space could substantially accelerate

the exploration. The memory consumption of the reverse explo-

ration is similar to the reversible simulation, with most memory

being consumed by the transition tables. Since we are employing a

depth-first search of the state space, it is not necessary to keep all

valid states at each time step in memory. Instead, each valid state

is immediately explored backward in time and discarded once all

previous states have been visited. Opportunities for increasing the

tractable scenario scale are discussed in Section 7.

6 CASE STUDY: DETERMINING ACCIDENT
CAUSES

In the following, we demonstrate the use of the reverse exploration

to study the reachability of specified road traffic situations. Reverse

state space explorations are started directly from specified final

simulation states without relying on previous forward simulation

runs. Further, we compare the cost of the reverse exploration to a

state space exploration using forward simulations.

As a first case study we determine the closest vehicle distance

that can occur on a two-lane road after a lane change to avoid a sta-

tionary obstacle. The final states from which reverse explorations

are started are illustrated in Figure 10a: two vehicles are positioned

on the right lane at all possible degrees of overlap, reflecting acci-

dent situations. On the left lane, an obstacle is placed at 150m from

the start of the lane. We carried out a parameter sweep across the

vehicle velocities v1,v2, the position p of the first vehicle, and the

distance ∆p to the second vehicle, with −4.5m representing a full

overlapping of the vehicles. The parameters were chosen from the

following intervals using a granularity of 0.125: v1,v2 ∈ [0, 20]
m

s
,

Session on Modeling Methodology SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

179

https://github.com/gperftools

p ∈ [100, 150]m, and ∆p ∈ [−4.5, 0]m. For each of the 3.8 × 10
8

parameter combinations, a reverse exploration by 10 steps was

attempted.

In total, the experiment required about 30 minutes of wall-clock

time. No initial states could be identified that lead to any of the

generated accident situations. Repeating the exploration starting

with the reversal of a car-following step instead of a lane-changing

step also did not yield any valid initial states, which is in accordance

with the known collision-freeness of the Intelligent Driver Model

at small time step sizes. From this observation, we can conclude

that it is impossible for the models to generate vehicle overlaps in

the considered configuration and scenario.

To identify the number of initial states leading to the minimum

possible gap between the vehicles, we repeated the experiment

with a fixed ∆p = 0.125m. Now, 131,493 initial states leading to

the generated final state were identified after about 80 seconds

of wall-clock time. Due to the limited precision of the number

representation and the reachability of most velocities both through

acceleration and deceleration, final states may be reachable from

a number of initial states. For instance, 388 unique initial states

lead to the same final state with v1 = 15.125
m

s
, v2 = 4

m

s
, and

p = 143.125m. For vehicle 1, the initial states cover velocities of

12.75
m

s
to 12.875

m

s
with a constant starting position of 129.875m.

The starting velocities of vehicles 2 range from 6.25
m

s
to 16.625

m

s
,

with starting positions from 132.5m to 133.5m.

In our second case study, we study a known issue of the MOBIL

model: since lane changes are based purely on the states of vehicles

on adjacent lanes, vehicles traveling two lanes apart may change

into the same position on the middle lane. The scenario is shown in

Figure 10b: we configured a three-lane road with two obstacles at

150m on the outer lanes. Two vehicles traveling in the direction of

the obstacles are placed on the middle lane so that they overlap by

a configurable amount, reflecting an accident. We carried out a pa-

rameter sweep across the same values as in case study 1, attempting

a reverse exploration by 10 steps at each parameter combination.

{

-Δp

V1V2

p 150m

(a) Case study 1: vehicles V1 and V2 overlap by −∆p m on a two-lane
road with an obstacle at 150m.

{

-Δp

V1V2

p 150m

(b) Case study 2: vehicles V1 and V2 overlap by −∆p m on the middle
lane of a three-lane road with obstacles at 150m.

Figure 10: The final simulation states in the case studies ex-
ploring the reachability of accident situations.

Overall, the exploration required about 78 minutes of wall-clock

time to identify 3,089,142 initial states leading to the specified final

states. As expected, the considered class of accidents only occurs

through lane changes from the outer lanes. The exploration cor-

rectly identified the symmetry in the initial states, i.e., there are two

sets of 1,544,571 initial states each, with the first vehicle starting

on the left or right lane, respectively. The configured sensing range

of 40m defines the minimum distance from the obstacles at which

a lane change, and thus a potential accident, may occur. Figure 11

shows the frequencies of final distances from the obstacles for all

the identified initial states. We can see that accidents may occur at

a variety of positions, with a maximum distance of 40m from the

obstacles, and a minimum distance of 11.625m. However, in most

cases, the concurrent lane changes that lead to the accident occur

at distances close to 40m. As in the first case study, we repeated the

exploration starting with a reverse car-following update instead of

a lane-changing update. Again, no initial states leading to any of

the generated final states were identified. We conclude that in the

considered combination of scenario and simulation models, concur-

rent lane changes to the middle lane are the only possible cause

for accidents.

We now determine the cost of arriving at the same conclusion

through forward simulations. The objective of the second case study

as described above is to exhaustively enumerate the set of initial

states that lead to an accident on the middle lane at a distance up to

50m from the obstacles, after completing 10 simulation steps. To con-

clusively determine all relevant initial states, forward simulations

are carried out starting from all initial states that may plausibly lead

to an accident. Here, plausibility is contingent on knowledge of the

model behavior: at one extreme, a forward state space exploration

without any model knowledge could be performed in a black-box

fashion by executing a simulation of up to 10 time steps from each

initial state permitted by the model. At the other extreme, perfect

model knowledge would allow us to directly enumerate the initial

states leading to accidents, rendering the study unnecessary. In

practice, partial model knowledge allows us to eliminate a subset of

initial states from consideration, and to terminate simulation runs

after fewer than 10 time steps if it is guaranteed that no accident

can occur.

Given that we are considering simulations spanning 10 time

steps of 0.1s each and are interested in accidents up to 50m from

the obstacles, we can rely on the maximum velocity of 20
m

s
to only

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30 35 40

F
re

q
u

e
n
c
y

Distance from obstacles [m]

Figure 11: Frequencies of final distances from the obstacles
in case study 2. Most accident situations occur immediately
once the obstacles enter the sensing range of 40m.

Session on Modeling Methodology SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

180

Table 4: Absolute and relative number of parameter combinations, number of visited states, and running time required for
forward and reverse exploration in case study 2.

Granularity #Parameter combinations #Visited states Running time
[m], [m/s] Reverse Forward Factor Reverse Forward Factor Reverse Forward Factor

0.5 1.70 × 10
6

6.73 × 10
7 39.65 3.04 × 10

7
4.62 × 10

8 15.21 21s 448.7s 21.37
0.25 2.51 × 10

7
1.04 × 10

9 41.50 4.33 × 10
8

7.23 × 10
9 16.68 305.7s 6 899.3s 22.57

0.125 3.85 × 10
8

1.63 × 10
10 42.50 6.55 × 10

9
1.15 × 10

11 17.48 4 697.3s 113 307.3s 24.12

consider initial distances from the obstacles up to 70m. Since the

two vehicles behave identically, we also avoid initial states that are

symmetrical to previously considered initial states. Using further

model knowledge and the specification of our case study, we can

formulate the following conditions at which a running forward

simulation can be terminated:

• The front vehicle is outside the sensing range of the vehicle

behind, while driving at least at the same velocity. In this

case, both vehicles accelerate according to the free road term

of the Intelligent Driver Model, which does not allow the

vehicle behind to catch up.

• An accident occurs and the vehicles are further than 50m

from the obstacles, or fewer than 10 time steps have passed.

• Since the case study targets accidents in front of the obstacles,

a simulation run is terminated once either of the vehicles

passes the obstacle.

Further reductions of the considered states could be achieved by a

more detailed analysis of the model-specific acceleration and lane-

changing behavior by the user. In contrast, the reverse exploration

does not rely on such user-specified conditions and instead elim-

inates unreachable states from consideration automatically. The

parameters for the initial states were chosen from the following

intervals: v1,v2 ∈ [0, 20]
m

s
, p1,p2 ∈ [80, 150]m. Symmetries are

exploited by skipping any initial state with p2 < p1 and by placing

vehicle 1 only on the left or middle lane, and vehicle 2 only on the

right or middle lane.

Table 4 compares the number of parameter combinations, the

number of explored states, and the running time of the forward

and reverse exploration for granularities of 0.5, 0.25, and 0.125. The

running times are averages of 3 runs. Disregarding symmetrical

states, the initial states leading to accidents identified by the for-

ward and reverse exploration were identical. We can see that even

when discarding state trajectories based on model knowledge and

by exploiting symmetries, the forward exploration considers a sub-

stantially larger number of parameter combinations. Compared to

the reverse exploration, 39.65 to 42.50 times more combinations

were considered. A factor of 15.21 to 17.48 more states were visited

by the forward exploration. As a consequence, the forward explo-

ration required a factor of 21.37 to 24.12 more time than the reverse

exploration. From these results, we conclude that in our case study,

even if model knowledge is applied to reduce the space of initial

and intermediate simulation states to consider, forward exploration

requires more time than reverse exploration to exhaustively deter-

mine the initial states that lead to an accident. In Section 8.2, we

discuss techniques for simulation state space exploration that could

further reduce the running time of both the forward and reverse

exploration.

7 DISCUSSION
The limitations of our approach include the limited spatial granu-

larity of the representations of vehicle velocities and positions, and

the vast number of states that must be visited during the reverse

exploration. In the following, we discuss opportunities to improve

the scalability and performance of the approach. Further, our eval-

uation and case studies relied on scenarios comprised of a single

multi-lane road. We sketch future work to extend the approach

towards more complex scenarios and potential uses of the approach

in practical safety studies.

7.1 Scalability and performance
7.1.1 Table size. The size of the forward and backward transition

tables depends on the chosen granularity of velocities and posi-

tions. At a granularity of 0.0625, the table size is within the memory

capacities of common workstations. Extrapolating from our mea-

surement results, a granularity of 0.03125 would require about 36

GiB of main memory, an amount beyond the capacities of most

current workstations but commonly available in the compute nodes

of supercomputing environments.

If the velocity function of the considered car-following model

can efficiently be reversed analytically or numerically, the reliance

on transition tables could be avoided entirely. Since there may

be multiple valid previous vehicle states (cf. Section 3.2), garbage

bits are still be required for disambiguation. While we consider

the memory consumption of the tables the main limitation of our

work, efficient numerical and analytical methods are likely to be

model-specific.

In Section 5.2, we saw that the number of required of garbage

bits per time step is lower at finer granularities. Thus, the dynamic

memory consumption of the reversible simulation can beminimized

by choosing the finest granularity that still allows the tables to be

stored in memory.

7.1.2 Concurrency. During a reverse simulation, the vehicle transi-

tions are performed front-to-back starting from the first vehicle on

each lane. This ordering is necessary because the backward transi-

tion of each vehicle depends on the previous state of the vehicle

ahead. Compared to a forward simulation, the concurrency of the

state updates is reduced: while reverse simulation serializes the

updates on each lane, the forward simulation can perform updates

for all vehicles in parallel. The need for serialization of the back-

ward transitions is inherent to the fact that the car-following model

specifies the relationship between the states of two consecutive

vehiclesV
follower

andV
leader

at time step n and the state ofV
follower

at time stepn+1. Since this relationship does not include the state of

Session on Modeling Methodology SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

181

V
leader

at n+ 1, the state ofV
leader

at time step n must be determined

prior to the backward transition of V
follower

.

The scalability of the reverse exploration towards larger scenar-

ios and time spans is mostly limited by the vast number of possible

previous lane positions of vehicles. Multiple options present them-

selves to counter the problem of state explosion: firstly, probabilities

could be assigned to previous states depending on the question to be

answered using the exploration. Then, a heuristic exploration could

be carried out by only visiting previous states above a minimum

probability. Secondly, the reverse exploration is highly amenable to

parallelization: while each path of the depth-first search backwards

in simulation time must be traversed sequentially, all valid states

at a given step in simulation time can be explored in parallel.

7.2 Generality
7.2.1 Stochasticity. In practice, simulation-based traffic studies

may rely on simulation models employing stochastic processes to

represent the variability in aspects such as the driver behavior. The

reversal of pseudo-random number generation is well-studied and

has been applied to a number of generators [20, 33, 45]. Some car-

following models include stochasticity by adding random numbers

to a vehicle’s acceleration or velocity [16, 35, 41]. The reversible

simulation could support this type of stochastic model by subtract-

ing the previously used random number at each time step before

consulting the backward transition table. However, if the random

process depends on previous states, as is commonly the case, a

more elaborate reversal scheme is required.

The uses of the reverse exploration in stochastic traffic simu-

lations could be two-fold: firstly, by exploring across all possible

previous states given the defined bounds on the stochasticity in the

models, the reachability of certain traffic situations can be proven

or disproven. Secondly, based on the underlying probability dis-

tributions used by the stochastic models, previous states may be

assigned probabilities, enabling statements on the probability of

different state sequences towards a given final state.

7.2.2 Application to road networks. When considering an extension

of the approach to entire road networks, we must consider changes

in speed limits. As the velocity function is parametrized with a

desired velocity, transition tables are required for each possible

speed limit in the network. Depending on the chosen granularity of

velocities and positions, the memory requirements limit the scale

of road network that can be considered.

Further challenges are posed by the vehicle behavior at road

boundaries: when a vehicle is close to the start of a road segment, it

may have resided at the current or the previous road at the previous

time step. While it may often be sufficient to resolve such situations

by consulting the tables corresponding to the speed limit of both

the previous and the current road, ambiguous situations may make

it necessary to store additional garbage bits.

Reverse transitions are executed front-to-back starting with the

leading vehicle on each lane. In a road network, vehicles may be

affected by other vehicles within their sensing range on the road

segment ahead. Thus, for each chain of vehicles within sensing

range, the leader vehicle from which the reversal can be started

must be identified first.

7.2.3 Use cases in safety analysis. In Section 6, we applied the

reverse state exploration to explore side-impact collisions caused

by a simultaneous lane changes. We also showed that collisions

cannot result purely from car-following behavior. However, this

statement is valid only for the chosen time step size. In future work,

our approach could be applied to determine the maximum time step

size that preserves the property of collision-freeness with respect

to the car-following and lane-changing models.

To enable more practical safety analyses, a car-following model

could be chosen that does not guarantee collision avoidance, en-

abling studies on rear-end collisions involving two or more vehicles.

Accidents involving pedestrians could be analyzed by representing

the pedestrians as obstacles that suddenly appear on the road.

Focusing on lane-changing behavior, our approach could be

used to study head on collisions on two-lane bidirectional roads.

Furthermore, side collisions could be studied to evaluate virtual

intersection control mechanisms.

Finally, another class of use cases is introduced by autonomous

vehicles (AVs). By providing reversible models of features such as

cooperative adaptive cruise control, the reverse exploration could

support studies on accidents among AVs and human drivers, among

AVs and pedestrians, and within platoons.

8 RELATEDWORK
In the following, we relate our reversible simulation and reverse

exploration schemes to existing work from the literature on parallel

simulation, state space exploration, and model checking.

8.1 Rollbacks in parallel simulation
In optimistic parallel and distributed simulations, each logical pro-

cess (LP) that executes a segment of the simulation carries out

computations speculatively. If a computation is later invalidated by

a message from a remote LP, the receiving LP is rolled back to a

previous point in simulated time. There are two general approaches

to enable rollbacks: state saving and reversible simulation.

When using state saving, the information required to roll back

to a previous simulation state is stored in memory. We can fur-

ther differentiate checkpointing, which periodically stores the en-

tire simulation state, from incremental state saving, which stores

only the changes from the previous simulation state. A number

of existing works focus on the automation of the state saving pro-

cess [6, 29, 38, 40]. In our reversible simulation scheme, the storing

of additional garbage bits at each time step bears some similarity

to incremental state saving and shares with the delta encoding

employed by LaPre et al. [17] the aim of storing only the minimum

amount of data to enable a perfect reversal. However, instead of

storing the state differences, we only store disambiguation infor-

mation required to select the correct forward transition out of a

transition set that can be determined based on fixed-sized lookup

tables.

In reversible simulation, techniques from reversible computing

are applied to enable rollbacks without the need for state saving.

Instead, rollbacks are carried out by executing code that reverses

the operations of the forward simulation program. Generic code

transformation tools have been proposed that enable the creation

of reverse model code without user intervention. In contrast to

Session on Modeling Methodology SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

182

these generic approaches, our reversible execution scheme relies on

model knowledge to store only the number of garbage bits required

to disambiguate among the possible previous states.

Reversible simulation techniques have been proposed for model

domains such as wireless communication [30], physics [25, 33],

epidemics [26], and electronic design automation [14, 23]. To our

knowledge, Perumalla and Yoginath [43, 44] are the only authors

who proposed reversible execution schemes tailored to microscopic

traffic simulation. In their works, substantial performance gains are

achieved through the optimistic execution of a reversible discrete-

event traffic model. In contrast to their proposal of models that

permit a reversible execution, we enable the reversible execution of

established models for car-following and lane-changing behavior

widely analyzed and applied in the traffic engineering literature.

8.2 Simulation state space exploration
Simulation studies often involve the exploration of vast numbers

of state trajectories. While traditional parameter studies vary the

simulation input parameters, computational steering [37] alters the

simulation state at runtime to explore branches of the state space.

Simulation cloning is a method to exploit overlaps in the simula-

tion state across multiple state trajectories: duplication of compu-

tations and data is avoided by representing identical parts of the

simulation state only once. Hybinette and Fujimoto investigated

simulation cloning in the context of parallel discrete-event simula-

tions [13]. An LP is cloned, i.e., a copy is created in memory, either

actively to generate a new branching point, or when it interacts

with another LP from a different simulation branch. This process

generates a cloning tree where each node represents the simulation

run that the child nodes have been cloned from. More recently,

methods for simulation cloning have been studied targeting agent-

based simulations [19] and on large-scale GPU platforms [46]. Our

reverse exploration approach is currently implemented sequentially

and does not attempt to avoid redundant computations across the

reachable reverse simulation state trajectories. When exploring

multiple branches of the state space in parallel, simulation cloning

could reduce the running time and memory consumption.

As noted by Hybinette and Fujimoto [13] and also investigated

in simulation-based optimization [2, 28], state space explorations

may be accelerated further by early termination of runs if it is guar-

anteed that the simulation will not exhibit the desired behavior. In

forward exploration, the decision for early termination relies on

user-specified criteria. In contrast, since the reverse exploration

starts directly from targeted final simulation states, unreachable

previous state trajectories are automatically discarded based purely

on the reverse state transitions permitted by the model. Never-

theless, model knowledge is still required to specify relevant final

simulation states. In Section 6, we showed results from a case study

comparing the cost of forward exploration using early termination

of runs to the reverse exploration approach.

The techniques of updatable simulation [8] and exact-differential

simulation [12] rely on rollbacks to support forward state space

explorations: an initial simulation run generates an event log that

permits the creation of branching points at arbitrary points in sim-

ulated time, thus allowing for a state exploration without frequent

recomputations. The main difference to our reverse exploration

scheme lies in the reliance on forward state transitions: updatable

simulation and exact-differential simulation only roll back along

state trajectories that have previously been executed in a forward

simulation. In contrast, the reverse exploration starts directly from

user-specified final simulation states.

Finally, memoization [1] is a generic approach to avoid repeated

computations that has also been applied to forward state space

explorations: at runtime, computation results are stored in memory

and retrieved whenever the same computation occurs again. While

early methods required modifications of user code [39], research

moved towards methods applicable without user intervention, e.g.,

in the form of a generic middleware for discrete-event simula-

tors [5]. Recently, Stoffers et al. presented a memoization approach

targeting parameter studies [32]. For user-annotated code blocks,

memoization is applied through automatic code transformation.

Our reversible simulation scheme relies on lookup tables to deter-

mine the set of forward transitions leading to the same simulation

state. In contrast to memoization, the lookup tables are generated a

priori and remain unchanged over the course of the simulation.

8.3 Model checking
Model checking is a family of techniques to automatically verify

properties of system models [3]. Typically, model properties are

verified by proving or disproving the reachability of certain model

states through an exhaustive exploration of relevant segments of

the state space. Model checking is commonly used to evaluate and

verify models in hardware design and distributed systems.

Several works considered the use of model checking techniques

to study multi-agent systems [4, 27, 36]. Frameworks such as MC-

MAS [21] are able to check properties of any multi-agent system

expressed in the supported formalism, e.g., computation tree logic.

A number of works have applied model checking techniques

to the road traffic domain, focusing on safety-critical applications

based on wireless inter-vehicle communication [7, 9, 22]. In these

works, exhaustive state space exploration was shown to be feasible

for scenarios of up to five vehicles.

Due to the enormous number of possible starting conditions to

be explored, stochastic model checking can be applied to derive

statistical results from partial state space explorations [18].

The reverse exploration approach of our present work can be

seen as reverse-in-time model checking. Instead of an exploration

of the state space through forward simulations, we specify final

simulation states and explore the state space backwards in time.

9 CONCLUSIONS
In this paper, we presented an approach for reversible simulation

and reverse exploration of microscopic traffic models. Perfect rever-

sal of a previous forward simulation is achieved by storing about 1

bit of data per time step and vehicle for disambiguation among possi-

ble previous states. We presented the use of the reverse exploration

for exhaustively studying the possible causes for a class of accident

situations. The performance evaluation of the reverse exploration

showed that our current implementation can visit multiple million

previous states per second of wall-clock time. The main directions

for future work are two-fold: firstly, reducing the constant memory

consumption of the approach will enable a finer granularity in the

Session on Modeling Methodology SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

183

representation of vehicle velocities and positions. Secondly, to sup-

port more complex safety analyses, reversible stochastic models

and manoeuver protocols should be developed.

ACKNOWLEDGEMENTS
This work was financially supported by the Singapore National

Research Foundation under its Campus for Research Excellence

And Technological Enterprise (CREATE) programme.

REFERENCES
[1] Harold Abelson and Gerald J. Sussman. 1996. Structure and Interpretation of

Computer Programs, Second Edition. MIT Press.

[2] Philipp Andelfinger, Sajeev Udayakumar, Wentong Cai, David Eckhoff, and Alois

Knoll. 2018. Model Preemption Based on Dynamic Analysis of Simulation Data

to Accelerate Traffic Light Timing Optimisation. In Proceedings of the Winter
Simulation Conference (WSC). IEEE, 652–663.

[3] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, Antoine Petit,

Laure Petrucci, and Philippe Schnoebelen. 2013. Systems and Software Verification:
Model-Checking Techniques and Tools. Springer Science & Business Media.

[4] Rafael H Bordini, Michael Fisher, Willem Visser, and Michael Wooldridge. 2006.

Verifying Multi-Agent Programs by Model Checking. Autonomous Agents and
Multi-Agent Systems 12, 2 (2006), 239–256.

[5] Abhishek Chugh and Maria Hybinette. 2004. Towards Adaptive Caching for

Parallel and Discrete Event Simulation. In Proceedings of the Winter Simulation
Conference, 2004., Vol. 1. IEEE, 433–441.

[6] Davide Cingolani, Alessandro Pellegrini, and Francesco Quaglia. 2017. Trans-

parently Mixing Undo Logs and Software Reversibility for State Recovery in

Optimistic PDES. ACM Transactions on Modeling and Computer Simulation
(TOMACS) 27, 2 (2017), 11.

[7] Madeleine El-Zaher, Jean-michel Contet, Pablo Gruer, and Franck Gechter. 2011.

Towards a Compositional Verification Approach for Multi-Agent Systems: Appli-

cation to Platoon System. In International Workshop on Verification and Validation
of Multi-Agent Models for Complex Systems.

[8] Steve L Ferenci, Richard M Fujimoto, Mostafa H Ammar, Kalyan Perumalla, and

George F Riley. 2002. Updateable Simulation of Communication Networks. In

Proceedings of the Workshop on Parallel and distributed simulation. IEEE, 107–114.
[9] Bruno Ferreira, Fernando AF Braz, Antonio AF Loureiro, and Sergio VA Campos.

2015. A Probabilistic Model Checking Analysis of Vehicular Ad-Hoc Networks.

In Vehicular Technology Conference. IEEE, 1–7.
[10] David Goldberg. 1991. What Every Computer Scientist Should Know About

Floating-Point Arithmetic. ACM Computing Surveys (CSUR) 23, 1 (1991), 5–48.
[11] Solomon Golomb. 1966. Run-Length Encodings. IEEE Transactions on Information

Theory 12, 3 (1966), 399–401.

[12] Masatoshi Hanai, Toyotaro Suzumura, Georgios Theodoropoulos, and Kalyan S

Perumalla. 2015. Exact-Differential Large-Scale Traffic Simulation. In Conference
on Principles of Advanced Discrete Simulation (PADS). ACM, 271–280.

[13] Maria Hybinette and Richard M Fujimoto. 2001. Cloning Parallel Simulations.

ACM Transactions on Modeling and Computer Simulation (TOMACS) 11, 4 (2001),
378–407.

[14] Glenn Jennings. 1991. Reversible Functional Simulation for Digital SystemDesign.

In Custom Integrated Circuits Conference. IEEE, 8.2/8–8.2/4.
[15] Arne Kesting, Martin Treiber, and Dirk Helbing. 2007. General Lane-Changing

Model MOBIL for Car-Following Models. Transportation Research Record 1999, 1

(2007), 86–94.

[16] Stefan Krauß. 1998. Microscopic Modeling of Traffic Flow: Investigation of Collision
Free Vehicle Dynamics. Ph.D. Dissertation. Universität zu Köln.

[17] Justin M LaPre, Elsa J Gonsiorowski, Christopher D Carothers, John Jenkins,

Philip Carns, and Robert Ross. 2015. Time Warp State Restoration via Delta

Encoding. In Proceedings of the Winter Simulation Conference. IEEE, 3025–3036.
[18] Axel Legay, Benoît Delahaye, and Saddek Bensalem. 2010. StatisticalModel Check-

ing: an Overview. In International Conference on Runtime Verification. Springer,
122–135.

[19] Xiaosong Li, Wentong Cai, and Stephen J Turner. 2017. Cloning Agent-Based

Simulation. ACM Transactions on Modeling and Computer Simulation (TOMACS)
27, 2 (2017), 15.

[20] Xinhu Liu and Philipp Andelfinger. 2017. Time Warp on the GPU: Design and

Assessment. In Conference on Principles of Advanced Discrete Simulation (PADS).
ACM, 109–120.

[21] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. 2009. MCMAS: A Model

Checker for the Verification of Multi-Agent Systems. In International Conference
on Computer Aided Verification. Springer, 682–688.

[22] Till Neudecker, Natalya An, and Hannes Hartenstein. 2013. Verification and

Evaluation of Fail-Safe Virtual Traffic Light Applications. In Vehicular Networking
Conference. IEEE, 158–165.

[23] Kalyan Perumalla and Richard Fujimoto. 2003. Using Reverse Circuit Execution

for Efficient Parallel Simulation of Logic Circuits. In Mathematics of Data/Image
Coding, Compression, and Encryption V, with Applications, Vol. 4793. International
Society for Optics and Photonics, 267–276.

[24] Kalyan S Perumalla. 2013. Introduction to Reversible Computing. Chapman and

Hall/CRC.

[25] Kalyan S Perumalla and Vladimir A Protopopescu. 2013. Reversible Simulations

of Elastic Collisions. ACM Transactions on Modeling and Computer Simulation
(TOMACS) 23, 2 (2013), 12.

[26] Kalyan S Perumalla and Sudip K Seal. 2010. Reversible Parallel Discrete-Event

Execution of Large-scale Epidemic Outbreak Models. InWorkshop on Principles
of Advanced and Distributed Simulation (PADS). IEEE, 106–113.

[27] Anand S Rao and Michael P Georgeff. 1993. A Model-Theoretic Approach to

the Verification of Agent-Oriented Systems. In International Joint Conference on
Artificial Intelligence. Citeseer, 318–324.

[28] Saman Razavi, Bryan A Tolson, L Shawn Matott, Neil R Thomson, Angela

MacLean, and Frank R Seglenieks. 2010. Reducing the Computational Cost

of Automatic Calibration through Model Preemption. Water Resources Research
46, 11 (2010).

[29] Markus Schordan, Tomas Oppelstrup, David Jefferson, Peter D Barnes Jr, and

Dan Quinlan. 2016. Automatic Generation of Reversible C++ Code and its

Performance in a Scalable Kinetic Monte-Carlo Application. In Conference on
Principles of Advanced Discrete Simulation (PADS). ACM, 111–122.

[30] Sudip K Seal and Kalyan S Perumalla. 2011. Reversible Parallel Discrete Event

Formulation of a TLM-Based Radio Signal Propagation Model. ACM Transactions
on Modeling and Computer Simulation (TOMACS) 22, 1 (2011), 4.

[31] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2017. On a Formal

Model of Safe and Scalable Self-Driving Cars. arXiv preprint arXiv:1708.06374
(2017).

[32] Mirko Stoffers, Daniel Schemmel, Oscar Soria Dustmann, and Klaus Wehrle.

2016. Automated Memoization for Parameter Studies Implemented in Impure

Languages. In Conference on Principles of Advanced Discrete Simulation (PADS).
ACM, 221–232.

[33] Yarong Tang, Kalyan S Perumalla, Richard M Fujimoto, Homa Karimabadi,

Jonathan Driscoll, and Yuri Omelchenko. 2005. Optimistic Parallel Discrete

Event Simulations of Physical Systems using Reverse Computation. In Workshop
on Principles of Advanced and Distributed Simulation (PADS). IEEE, 26–35.

[34] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. 2000. Congested Traffic

States in Empirical Observations and Microscopic Simulations. Physical Review
E 62, 2 (2000), 1805.

[35] Martin Treiber, Arne Kesting, and Dirk Helbing. 2006. Delays, Inaccuracies and

Anticipation in Microscopic Traffic Models. Physica A: Statistical Mechanics and
its Applications 360, 1 (2006), 71–88.

[36] Wiebe Van Der Hoek and Michael Wooldridge. 2002. Model Checking Knowledge

and Time. In International SPINWorkshop on Model Checking of Software. Springer,
95–111.

[37] Jeffrey Vetter and Karsten Schwan. 1997. High Performance Computational

Steering of Physical Simulations. In Proceedings of the International Parallel
Processing Symposium. IEEE, 128–132.

[38] George Vulov, Cong Hou, Richard Vuduc, Richard Fujimoto, Daniel Quinlan,

and David Jefferson. 2011. The Backstroke Framework for Source Level Reverse

Computation Applied to Parallel Discrete Event Simulation. In Proceedings of the
Winter Simulation Conference (WSC). IEEE, 2960–2974.

[39] Kevin Walsh and Emin Gün Sirer. 2004. Staged Simulation: A General Technique

for Improving Simulation Scale and Performance. ACM Transactions on Modeling
and Computer Simulation (TOMACS) 14, 2 (2004), 170–195.

[40] Darrin West and Kiran Panesar. 1996. Automatic Incremental State Saving. ACM
SIGSIM Simulation Digest 26, 1 (1996), 78–85.

[41] Rainer Wiedemann. 1974. Simulation des Strassenverkehrsflusses. Habilitation

Thesis. Institute for Traffic Engineering, University of Karlsruhe.

[42] Rosemary HWild and Joseph J Pignatiello Jr. 1994. Finding Stable SystemDesigns:

a Reverse Simulation Technique. Commun. ACM 37, 10 (1994), 87–99.

[43] Srikanth B Yoginath and Kalyan S Perumalla. 2008. Parallel Vehicular Traffic

Simulation using Reverse Computation-Based Optimistic Execution. InWorkshop
on Principles of Advanced and Distributed Simulation (PADS). IEEE, 33–42.

[44] Srikanth B Yoginath and Kalyan S Perumalla. 2009. Reversible Discrete Event

Formulation and Optimistic Parallel Execution of Vehicular Traffic Models. Inter-
national Journal of Simulation and Process Modelling 5, 2 (2009), 104–119.

[45] Srikanth B Yoginath and Kalyan S Perumalla. 2018. Efficient Reversible Uni-

form and Non-Uniform Random Number Generation in UNU.RAN. In Annual
Simulation Symposium. Society for Computer Simulation International, 2.

[46] Srikanth B Yoginath and Kalyan S Perumalla. 2018. Scalable Cloning on Large-

Scale GPU Platforms with Application to Time-Stepped Simulations on Grids.

ACM Transactions on Modeling and Computer Simulation (TOMACS) 28, 1 (2018),
5.

[47] Alwin Zulehner and Robert Wille. 2017. Make it Reversible: Efficient Embedding

of Non-Reversible Functions. In Conference on Design, Automation & Test in
Europe. European Design and Automation Association, 458–463.

Session on Modeling Methodology SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

184

	Abstract
	1 Introduction
	2 Fundamentals
	2.1 Microscopic traffic simulation
	2.2 Traffic simulation for safety analysis
	2.3 Reversible computing

	3 Reversible simulation scheme
	3.1 Number representation
	3.2 Transition tables
	3.3 Encoding of lane changes

	4 Reverse state space exploration
	5 Evaluation
	5.1 Size of transition lookup tables
	5.2 Reversible simulation
	5.3 Reverse state space exploration

	6 Case study: determining accident causes
	7 Discussion
	7.1 Scalability and performance
	7.2 Generality

	8 Related Work
	8.1 Rollbacks in parallel simulation
	8.2 Simulation state space exploration
	8.3 Model checking

	9 Conclusions
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 358.72, 736.18 Width 216.06 Height 28.95 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 358.7247 736.1754 216.0618 28.9461

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 12
 0
 1

 1

 HistoryList_V1
 qi2base

