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ABSTRACT
To achieve highest performance, parallel simulation of net-
works on modern hardware architectures depends on large
numbers of independent computational tasks. However, the
properties determining a network model’s concurrency are
still not well understood. In this paper, we propose an an-
alytical model that enables concurrency estimations based
on model knowledge and on statistics gathered from sequen-
tial simulation runs. In contrast to an automated concur-
rency analysis of event traces, the analytical approach en-
ables insights into the relationship between the topology and
communication patterns of the simulated network, and the
resulting concurrency. We consider three fundamentally dif-
ferent network models as implemented in the network simu-
lators PeerSim and ns-3: a large-scale application-layer peer-
to-peer network, IP-based routing in a fixed topology, and
a wireless ad-hoc network. For each model, we conduct an
in-depth analysis, exposing the relationships between model
characteristics and concurrency. Our analysis is validated by
comparing estimated concurrency values to reference results
of a trace-based analysis. The identification of key factors
for concurrency forms a step towards a classification of net-
work models according to their potential for parallelization.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—Modeling Techniques; I.6.1 [Computing Meth-
odology]: Simulation Theory—Model Classification; I.6.8
[Computing Methodology]: Types of Simulation—Par-
allel, Distributed, Discrete Event

General Terms
Performance

Keywords
concurrency, parallelism, simulation, parallel, distributed,
discrete-event, network simulation, network models
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1. INTRODUCTION
The benefit of parallelization of a discrete-event network

simulation model depends on properties of the considered
network. Due to the complex interactions between the net-
work topology, the communication patterns and the simu-
lator realization, there is still a lack of guidelines to decide
upon the suitability of different classes of network models
for parallel simulation.

In the past years, there has been a renewed interest in par-
allel simulation due to the diminishing increases in single-
core performance of processors. In addition to traditional
approaches in CPU-based multi-core or supercomputing en-
vironments, the increasing prevalence of parallel hardware
architectures such as graphics processing units and CPU-
based many-core accelerators has led researchers to consider
simulator designs for parallel execution on hundreds or thou-
sands of tightly coupled cores [1, 5, 15, 18]. The novel sim-
ulator designs enable an efficient execution of network mod-
els previously considered unsuitable for parallel simulation
due to their fine-grained computations and the need for fre-
quent synchronization between cores. However, to occupy
the enormous numbers of available cores, large numbers of
independent computational tasks are required. Hence, the
concurrency of simulation models, i.e., the maximum num-
ber of simulation events that can be executed in parallel
while still maintaining simulation correctness, comes into
focus as a key property for efficient parallel simulation. We
distinguish concurrency from parallelism, i.e., the number of
events executed in parallel in a real-world simulation run, as
well as from the resulting real-world simulation performance,
both of which are subject to the simulator realization.

In this paper, we conduct an analysis of network simula-
tion models to expose the relationships between the models’
network topologies and communication patterns, and their
concurrency. We analyze three network models representing
distinct classes of networks and show how the parameters
required for analytical concurrency estimation can be cal-
culated. We expect the presented results to facilitate the
analysis of further network models with similar topologies
and communication patterns, so that our analysis forms a
step towards a classification of network models according to
their concurrency, i.e., according to their aptness for paral-
lelization. We validate the concurrency estimations by com-
parison with reference values gathered from event traces of
sequential simulation runs. In addition to guiding paral-
lelization decisions, the analysis enables a closer understand-
ing of differences in concurrency between models of different
classes of networks.
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Our main contributions are as follows:
1. Estimation Model: We present an analytical model to

estimate the concurrency of network models based on model
knowledge and on statistics gathered from sequential simu-
lation runs. The analytical approach enables an understand-
ing of the causes of a network model’s degree of concurrency.
Our validation shows that reasonably accurate estimations
can be achieved even when abstracting from the network
model’s topology to a large degree.

2. Network Model Analysis: We apply the estimation
model to three fundamentally different network models as
implemented in popular simulators: a large-scale peer-to-
peer network, IP-based routing in a fixed topology, and a
wireless ad-hoc network. The analysis uncovers the relation-
ship between network model properties and concurrency.

The remainder of the paper is structured as follows. In
Section 2, we give a brief overview of our approach to the
construction of our analytical concurrency model. In Sec-
tion 3, we discuss related approaches to concurrency eval-
uation. In Section 4, we present our methodology and our
analytical model for concurrency estimation. In Section 5,
we analyze three network models’ event patterns, conduct
a sensitivity analysis and estimate the models’ concurrency.
In Section 6, we evaluate the accuracy of our concurrency
estimation. In Section 7, we discuss challenges of the ana-
lytical approach. Section 8 gives a summary of our results
and concludes the paper.

2. OUR APPROACH
Our goal is to provide an analytical model to estimate

a network simulation model’s concurrency in a white-box
fashion, i.e., while enabling insights into the causes of the
network model’s concurrency. A network model’s exact con-
currency can be determined using critical path analysis, a
well-known black-box approach that will be introduced in
Section 3. Critical path analysis provides reference values
that our analytical model will be validated against. How-
ever, the properties of critical path analysis render it a dif-
ficult target for mathematical analysis.

Instead, we construct our analytical model by analyzing
YAWNS (cf. Section 3), a second black-box concurrency
evaluation approach that lends itself to mathematical mod-
eling and whose results are close to critical path analysis.
Our analytical model successfully approximates the results
of YAWNS, and hence, the reference results gathered using
critical path analysis.

Our analysis applies to simulations under conservative
synchronization, where the synchronization algorithm en-
sures correctness prior to each event execution. Optimistic
synchronization may potentially enable larger concurrency,
but is out of the scope of our work.

3. RELATED WORK
In this section, we give a brief summary of two classes of

methods for concurrency evaluation: trace-based approaches
determine the concurrency in a network model by a pro-
grammatic analysis of event traces generated during sequen-
tial simulation runs. These approaches determine the con-
currency in the model accurately under their stated assump-
tions, but are performed in a black-box fashion that limits
insights into the sources of the identified concurrency. An-
alytical approaches require more manual effort and usually

determine a rough estimation of concurrency, yet may allow
for an understanding of concurrency potentials and limita-
tions, as is the intention of the analytical model and results
presented in this paper.

3.1 Trace-Based Concurrency Evaluation
In discrete-event network models, communication activi-

ties are modeled as timestamped events representing instan-
taneous state changes of the simulated nodes. The commu-
nication patterns in a given network model define a prece-
dence relation governing the event execution order. For in-
stance, subsequent message arrivals at a single node must
be simulated in timestamp order to maintain the correct-
ness of the node state. An event can safely be executed as
soon as no remaining precedence relationships demand the
prior execution of other events. An additional constraint
is given by the lookahead, which defines an upper bound for
the delta between the current simulation time and the times-
tamp of events that can be executed safely. The magnitude
of valid lookahead values depends on network model prop-
erties, e.g., on the link latencies between simulated nodes.
In synchronous simulation approaches, processor cores can
be considered to execute safe events in lock-step. The con-
currency of the network model is the average number of
events executed at the same time, disregarding simulation
overheads and limitations in the number of cores.

Critical path analysis [4, 9] is a method to determine the
concurrency in a simulation model by traversing a depen-
dency graph reflecting the precedence relationships between
the events of a previous sequential simulation run of the
considered model. In the dependency graph depicted in
Figure 1, events are represented by circles. An arrow be-
tween events e1 and e2 reflects the precedence relationship
“e1 before e2”. There are two causes of precedence relation-
ships: first, events cannot be processed prior to their cre-
ation in the course of the simulation. Hence, there is an
edge reflecting the precedence of an event e over any new
events created by e. Second, to enforce timestamp ordering
of events in each node, there is an edge between an event
and its direct predecessor w.r.t. simulated time pertaining
to the same node. Critical path analysis can be performed
in an iterative fashion: events that are safe to be executed
according to the precedence relation are removed, allowing
further events to be removed in the next execution. In Fig-
ure 1, dashed rectangles indicate groups of events that can
be processed at the same time, i.e., concurrently. If equal
processing time for all events is assumed, the total number
of executions, divided by the number of events in the simu-
lation in total, is the average concurrency of the simulation
model assuming an unlimited number of processor cores, in-
finite lookahead, and no overheads for synchronization and
communication. In Figure 1, nine events are processed in a
total of six executions. Hence, the concurrency is 9/6 = 1.5.

YAWNS [13] is a well-known synchronous synchronization
algorithm for parallel and distributed simulation. A simu-
lation iteration using YAWNS is illustrated in Figure 2. In
each iteration, the timestamp tmin of the earliest event is
determined. A fixed lookahead value l determined accord-
ing to model properties gives a lower bound on the times-
tamp delta between an event and its creation. Given tmin,
l ∈ N, all events in the lookahead window [tmin, tmin + l]
are guaranteed to create no events with timestamps below
tmin + l. As the lookahead window is a closed interval, its
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Figure 1: Critical path analysis of a dependency graph.

Figure 2: A simulation iteration using YAWNS: events in
the interval [tmin, tmax] create no events with timestamps
below tmax and are thus safe to be executed in parallel.

width is l + 1. Events pertaining to different nodes within
each lookahead window can be processed concurrently with-
out allowing for violations of timestamp order per node. The
number of executions required to process a lookahead win-
dow is the largest number of events pertaining to a single
node. In the example, nine events in the lookahead window
can be processed in four executions. Hence, the concurrency
within the shown lookahead window is 9/4 = 2.25. Due to
its conceptual simplicity, YAWNS has been used as a basis
for analytical concurrency estimation in previous works [13,
17]. Here, we employ YAWNS in two ways: first, we ana-
lytically estimate the expected YAWNS concurrency on the
basis of key parameters of network models. Second, we show
that the results between a concurrency analysis using critical
path analysis and YAWNS are sufficiently close to use these
approaches interchangeably when evaluating the potential
of network models for parallelization.

3.2 Analytical Concurrency Estimation
Existing works proposed a multitude of approaches to per-

formance estimation of parallel and distributed simulations.
In this paragraph, we limit our brief summary of previous
works to approaches that focus on allowing for insights in
the causes of the concurrency available in simulation mod-
els, disregarding black-box approaches based on simulative
models or event traces.

In 1993, Nicol [13] studied the concurrency of simulations
based on YAWNS. Using a stochastic model, it is shown that
synchronization overheads relative to event processing costs
decrease with larger simulation activity. Calculated bounds
are evaluated for a number of example models. Similar to
our work, concurrency analysis is performed by estimating
the number of events in each lookahead window. However,
contrary to Nicol, we focus on specific network models im-
plemented in popular simulators and show how concurrency
estimations can be derived with relative ease based on net-
work model properties readily available to modelers.

In 1999, Liu et al. [7] presented back-of-the-envelope cal-
culations to estimate the runtime of parallel simulations.
However, while the costs for communication in the execu-
tion environment are taken into account, load imbalances,

which determine the model’s concurrency, are not consid-
ered. Hence, the proposed approach is not applicable if we
are interested in the concurrency of the network model.

In 2003, Varga et al. [20] proposed an efficiency criterion
for conservative parallel simulation using the null-message
algorithm. Their approach relates the number of events per
lookahead window to the communication costs in the execu-
tion environment, allowing for rough estimations of simula-
tion efficiency. Since differences in the workload for different
groups of nodes in the simulated network are not considered,
estimation errors will be large if there are substantial load
imbalances. Improvements in estimation accuracy of their
approach may be possible by conducting a manual network
model analysis as presented in our paper, and relating the
resulting estimation to the expected communication costs.

In 2013, Pienta et al. [17] analyzed the concurrency of
scale-free networks. Based on an assumed communication
pattern within the network, their analysis provides an es-
timation of the expected concurrency under YAWNS-based
synchronization. To determine the stationary distribution
of events among the simulated nodes, an iterative calcula-
tion is performed until a steady-state is reached. Again, our
work differs in the consideration of specific network models
as implemented in real-world simulators. Further, an anal-
ysis of the communication patterns in the studied network
models allows us to base our estimation on expected num-
bers of events within a single lookahead window without the
need for an iterative model.

4. ESTIMATING CONCURRENCY
In this section, we first describe the building blocks and as-

sumptions of our concurrency estimation methodology. We
then propose an analytical concurrency model as a basis for
the analysis of specific network models.

4.1 Methodology
Critical path analysis allows for a trace-based calculation

of the concurrency in the network model assuming infinite
lookahead. However, typically, parallel simulation is per-
formed under a fixed lookahead value that restricts the con-
currency that is visible to the simulator. Thus, the results
given by critical path analysis are not sufficient to determine
the effective maximum concurrency.

To gather more realistic estimates, we adapt critical path
analysis by limiting the lookahead during each analysis it-
eration. The adapted critical path analysis determines an
upper bound for the average number of events that can re-
alistically be executed in parallel given unlimited proces-
sor cores and assuming no overhead for synchronization and
communication between cores. In addition, we apply the
common assumption of identical computational costs for all
events. In effect, the adapted critical path analysis coincides
with an analysis of event traces similar to YAWNS, with the
difference that a new lookahead window is calculated after
each execution of events. Hence, a YAWNS-based analysis
will typically determine lower concurrency values than the
upper bound calculated by critical path analysis.

Ideally, we would derive an analytical model to estimate
critical path analysis results directly. However, we are not
aware of a method to analytically estimate critical path anal-
ysis without relying on an iterative, i.e., numerical approach.
As critical path analysis allows for overlapping lookahead
windows, each iteration depends on the results of the previ-
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ous iteration. However, our aim is a concurrency estimation
that enables insights beyond the sheer concurrency values
determined by iterative approaches.

In contrast, when analyzing YAWNS, each lookahead win-
dow can be considered separately. Therefore, the analytical
model that will be presented in Section 4.2 estimates con-
currency according to YAWNS. For the analytical results
to be meaningful, it is important that the estimations are
close to the reference results from critical path analysis. In
Section 6, we show that for all considered network models,
the deviations between the results of critical path analysis,
YAWNS and our analytical model are sufficiently low so that
the methods can be used interchangeably to guide decisions
on the parallelization of network models.

Further, the benefit of the analytical approach hinges on
the simplicity of acquiring the necessary inputs to the ana-
lytical model from the given network model. In Section 4.2,
we will detail the information required to gather estima-
tions for three network models with fundamentally different
characteristics. We argue that for the considered network
models, the required inputs to the analytical model can be
determined with relative ease.

4.2 Analytical Model
Our fundamental approach to concurrency estimation is to

determine the characteristics of an average lookahead win-
dow. In Section 3.1, we have seen that the concurrency
within a single lookahead window of a YAWNS-based simu-
lation is the total number of events etotal in the lookahead
window, divided by the largest number m of events pertain-
ing to a single simulated node. Hence, given estimates of m
and etotal, the estimated concurrency of the network model
is

Yest :=
etotal
m

While etotal can easily be estimated based on the commu-
nication activity in a network model, we need to derive m
from an estimate of the distribution of events to simulated
nodes. As we will see in Section 5 on the example of con-
crete network models, simulated nodes can be grouped into
a small number of categories, each category being assigned a
distinct number of events total. As an approximation, events
assigned to each category are assumed to be distributed uni-
formly among the nodes in the category. The number of
nodes in each category and the number of events assigned
to each category are the inputs from which our analytical
model derives m.

More formally, we divide the nodes of the simulated net-
work into c categories so that all ni nodes in a single cat-
egory i share the same estimated number of events ei per
lookahead window. Within each category, we consider the
assignment of events to nodes as a sequence of Bernoulli tri-
als with probability pi = 1/ni each. The probability for a
single node of category i being assigned ≤ k events follows
the binomial distribution:

Fi(k) =

k∑
j=0

(
ei
j

)
pi
j(1− pi)ei−j

The probability for all nodes of category i being assigned
≤ k events is then:

Gi(k) = Fi(k)ni

By considering all node categories, we arrive at the probabil-
ity for all nodes of all categories being assigned ≤ k events:

G(k) =

c∏
i=1

Gi(k)

We are interested in the expectation of random values dis-
tributed according to G, i.e., the expected largest number of
events any single node is assigned in a lookahead window [3].
The expectation is:

m =

∞∑
k=1

kg(k)

Here, m is the expected number of parallel event executions
required to process a single lookahead window. Now, given
the expected total number of events in a lookahead win-
dow etotal, the estimated YAWNS concurrency is: Yest :=
etotal/m

In the following, we show how the node categories and
event counts can be determined for concrete network models.

5. NETWORK MODEL ANALYSIS
In this section, we study the concurrency of three network

models. For each model, we first analyze the event patterns
resulting from the communication patterns in the simulated
network. Second, we conduct a sensitivity analysis to find
the key factors determining the model’s concurrency. Third,
we determine the parameters required to analytically esti-
mate the model’s concurrency.

5.1 Peer-to-Peer Overlay Network
As our first example, we study a model of a Kademlia-

based network. Kademlia [11] is a protocol used to form a
distributed hash table (DHT) enabling the efficient storage
and retrieval of key-value pairs in a peer-to-peer network.
We have previously shown that models of Kademlia-based
networks contain substantial concurrency and can benefit
strongly from parallelization using SMP clusters or many-
core architectures [1, 2]. We analyze the Kademlia model
with reference to an implementation in the PeerSim network
simulator1. As is common with peer-to-peer networks, the
model abstracts from all OSI layers but the application layer,
i.e., the physical topology is reflected by link latencies drawn
from a random distribution. The application-layer itself is
modeled accurately in accordance with the BitTorrent DHT
specification [10].

5.1.1 Event Patterns
There are two sources of traffic in Kademlia: communi-

cation triggered actively by users of the DHT, and routing
table maintenance. The latter comprises both operations for
refreshing bucket contents as well as operations for checking
the responsiveness of specific peers.

The event patterns representing the communication ac-
tivities in the Kademlia model are shown in Figure 3. The
building block fundamental to all communication in Kadem-
lia is the remote procedure call (RPC), a sequence of three
events representing the following interaction:

A. Peer 1 sends a request

B. Peer 2 receives the request and creates a response

C. Peer 1 receives the response.

1http://peersim.sourceforge.net/
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Figure 3: Event patterns in the Kademlia model: lookups
are composed of α overlapping sequences of RPCs. Node 1
performs a lookup with α = 1 (left) and α = 2 (right).

So-called lookups are used to perform storage and retrieval
operations. Each lookup consists of a sequence of RPCs
where step C generates a new request until the lookup ter-
minates. A parameter α specifies the number of concurrent
RPCs during a lookup. Lookups with α > 1 can be regarded
as a superposition of multiple sequences of RPCs.

From the event pattern, we can easily deduce the number
of events associated with a lookup. One initial event triggers
the lookup, and each subsequent RPC is associated with two
events: a request and its response. If the number of RPCs r
per lookup is known, the total number of events per lookup
is eper lookup = 2r + 1, independently of α. Of these, r + 1
events pertain to the peer performing the lookup, and r
events pertain to other peers.

The remaining traffic in the Kademlia model is created
by pings triggered if the responsiveness of a peer is to be
checked. If a peer’s routing table is fully populated and a
peer becomes aware of a new remote peer, peers of unknown
responsiveness in the routing table are checked using ping
RPCs. The receiver of a ping request may then recursively
trigger new pings to further peers.

When creating the inputs to the analytical model, we con-
sider the events created by lookups in detail, while treating
ping events as uniformly distributed noise.

Concurrency in the Kademlia model results from two in-
dependent parameters:

1. λ independent lookups running concurrently

2. α concurrent RPCs performed during each lookup

Since events pertaining to each individual peer must be exe-
cuted sequentially in timestamp order, the resulting concur-
rency is limited by the number n of peers in the network.

5.1.2 Sensitivity Analysis
We study the sensitivity of the Kademlia model to the

number n of peers in the network, the number λ of con-
current lookups, and the number α of concurrent RPCs per
lookup. To set a fixed λ accurately, we require an estimate of
the average lookup duration d, which can be gathered from
a brief initial simulation run. Then, the rate r at which
lookups must be generated to achieve the desired number of
λ concurrent lookups follows Little’s law: r = λ

d
.

For runs with λ = 100 and λ = 1,000, we triggered the
generation of event traces after 1,000s of simulated time
to allow the network to reach a steady state. Using the
adapted critical path analysis according to Section 4.1, we
analyzed events executed within 10s of simulated time. How-
ever, since the results differed only slightly with shorter runs,
we configured the computationally expensive runs for λ =
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Figure 4: Results of sensitivity analysis of the Kademlia
model with α = 8, varying the number λ of concurrent
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Figure 5: Results of sensitivity analysis of the Kademlia
model with λ = 10,000, varying the number α of concurrent
RPCs per lookup.

10,000 with only 300s of warm-up time. Since link latencies
in ms are drawn from a uniform distribution on [10, 200], a
fixed lookahead value of 10ms was used. From the results de-
picted in Figures 4 and 5, we can see that, as expected, larger
numbers of concurrent lookups result in larger concurrency.
Furthermore, larger α provides an increase in concurrency.
In both figures, we can see that concurrency is limited by
the network size. The results provide an upper bound for
the speedup by parallelization of the network model. De-
pending on the costs of communication and synchronization
during simulation, many of the considered parameterizations
suggest the parallel execution of the model on hundreds or
thousands of processor cores. Hence, as shown on the ex-
ample of a GPU-based simulator in [1], the results indicate
that the Kademlia network model can benefit substantially
from execution on many-core devices.

5.1.3 Analytical Concurrency Estimation
In the following, we describe how, based on key metrics of

the Kademlia model, we determine the inputs required for
the analytical concurrency estimation. The inputs to the
analytical model are printed in boldface.

We differentiate between two categories of peers: active
peers that are currently executing a lookup, and passive peers
that respond to incoming requests only. We assume that the
number λ of concurrent lookups is a scenario parameter, and
that the initiations of lookups are distributed uniformly over
the peers in the simulated network. The average number λrt
of additional concurrent lookups created for routing table
maintenance can be gathered from a sequential simulation
run of the given configuration and subsequently be included
in our consideration:

λ′ = λ+ λrt
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Then, the ratio of active peers of all peers is:

ractive = 1− (1− 1

n
)λ

′

The absolute numbers of active and passive peers are thus:

nactive = n× ractive
npassive = n− nactive

Given the width of the lookahead window l+ 1, the average
number r of RPCs per lookup, and the average lookup dura-
tion d, the total number of events generated for all lookups
per lookahead window is:

elookups = (l + 1)× λ′ × 2r + 1

d

Finally, we consider the number p of ping RPCs per unit
of simulated time generated for checking the online status
of peers, each generating two events, to obtain the total
number of events per lookahead window:

etotal = (l + 1)× (λ′ × 2r + 1

d
+ 2p)

Now, we consider active and passive peers separately. In
each lookup, active peers generate one initial event and one
event for each RPC. The number of these events for all active
peers is:

eactive,lookup = (l + 1)× λ′ × r + 1

d

Active peers also receive some of the requests generated in
lookups of other peers. The number of request events for all
active peers is:

eactive,request = (l + 1)× λ′ × ractive ×
r

d

Finally, a proportion of ping events targets active peers:

eactive,ping = (l + 1)× p× ractive

Now, the total number of events expected to be generated
per lookahead window for all active peers is:

eactive = eactive,lookup + eactive,request + eactive,ping

The remaining events pertain to passive peers:

epassive = etotal − eactive

Using the estimated number of events for the two categories
of active and passive peers, we can now determine the ex-
pected largest number m of events per lookahead window
to be processed by a single peer in the simulation according
to the calculations described in Section 4.2. The estimated
concurrency is then etotal/m.

Discussion: In the simulated network, each lookup creates
a sequence of RPCs targeting a sequence of peers according
to the dynamic contents of the routing tables of peers on
the path to the target of the lookup. Nevertheless, in the
analysis, we consider the events pertaining to each peer cat-
egory as uniformly distributed among the peers in the re-
spective category, ignoring the network topology created by
the Kademlia protocol completely. In Section 6 we will see
that our estimations are reasonably accurate. Hence, we can
conclude that the impact of the exact topology of the con-
sidered Kademlia-based network on the concurrency of the
network model is relatively low. Instead, the concurrency is
dominated by the raw message counts per peer category as
well as by the overall network size.

Figure 6: A single campus network of the topology from the
NMS program (Fig. adapted from [14]).

5.2 TCP/IP in a Fixed Topology
Our second example is a network model created in the

context of the DARPA “Network Modeling and Simulation”
(NMS) program. The model is commonly used to bench-
mark parallel simulators [6, 14, 19] and was selected for its
strong impact of the network topology on concurrency.

The basic building block of the topology is the campus
network depicted in Figure 6. On each campus, there are
three subnetworks. In Network 0 and Network 1 and be-
tween Network 0, 1 and 3, there are nodes representing
servers and routers interconnected by a 1 Gbps link with
5ms latency. In Network 2 and 3, there are local area net-
works containing a configurable number of nodes represent-
ing user workstations connected to a switch using 100 Mbps
links with 1ms latency. A configurable number of campus
networks is connected in a ring using links with a latency of
200 ms. For each of the LAN nodes, a TCP stream with a
constant data rate of 500 kbps is transmitted by one of the
nodes 1:2, 1:3, 1:4 or 1:5 of the neighboring campus network.

Since all messages pass through the nodes connecting in-
dividual campus networks, we study the effects of varying
the bandwidth between these nodes between 1 Mbps and
1,000 Mbps. In the following, we refer to the nodes connect-
ing the individual campus networks as hubs. In addition, we
differentiate between two types of bottlenecks: network bot-
tlenecks are nodes that due to their position in the network
and their limited bandwidth restrict the overall throughput
in the network. Simulation bottlenecks are nodes for which
disproportionally large numbers of events must be processed
per unit of simulated time, so that these nodes limit the con-
currency of the simulation model.

An implementation of the network model in the popular
network simulator ns-32 uses an accurate representation of
the network and transport layer, whereas the lower layers
are modeled by the fixed link latencies specified above. In
our analysis, we apply the common approach of using a fixed
lookahead value of 1ms that is applicable to all nodes in the
network. It may be possible to extract larger concurrency
with a dedicated lookahead value for each link at the cost of
higher complexity of the synchronization scheme (e.g., [12]).

5.2.1 Event Patterns
Since it is not always possible to transmit messages cre-

ated by a simulated application instantaneously, in ns-3,

2http://www.nsnam.org/
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Figure 7: Event patterns in the TCP/IP model: a single
packet is transmitted from node 1 to 3 via node 2. Node 3
replies with an acknowledgement.

creation of messages and their transmission is modeled sep-
arately. Hence, the transmission of a single message hold-
ing a payload via a linear sequence of nodes is reflected by
the events and precedence relationships depicted on the left
hand side of Figure 7: the sender generates one event for the
message’s creation (SendPacket), one for the message’s suc-
cessful transmission on the link layer (TransmitComplete),
and one notifying the transport layer that a packet was sent
(NotifyDataSent). Each node on the path to the receiver
generates two events for reception (Receive) and successful
forwarding (TransmitComplete) of the message. Finally, the
receiving node generates two events representing reception:
one for reception on the link layer (Receive), and one for
forwarding the message to the upper layers of the network
stack (ForwardUp).

Additional messages are created by TCP on the receiver
side. We use the New Reno implementation of TCP, wherein
by default, for every second message, an acknowledgement
is transmitted from the receiver to the sender. As depicted
on the right hand side of Figure 7, each acknowledgement
generates one event for the receiver of the payload (Trans-
mitComplete), two events for each hop on the path to the
sender (Receive, TransmitComplete) and two events for the
original sender (Receive, ForwardUp).

5.2.2 Sensitivity Analysis
In the analysis of the sensitivity of the model’s concur-

rency to model parameters, we used 60s of warm-up time.
Since the results were virtually independent of the consid-
ered span of simulated time, it was sufficient to analyze
events executed within 1s of simulated time. The results in
Figure 8 show the sensitivity of the model’s concurrency to
the number of campus network and the hub bandwidth for a
fixed number of 16 LAN nodes. Since campus networks com-
municate only with their direct neighbors, larger numbers
of campus networks do not increase the amount of traffic
handled by individual hubs. Hence, irrespective of the hub
bandwidth, there is a linear relationship between the num-
ber of campus networks and the critical path concurrency. A
comparison between the curves for different hub bandwidths
shows initially surprising results: the concurrency does not
simply increase with larger hub bandwidth: even though a
hub bandwidth of 1,000 Mbps allows for far fewer messages
transmitted per unit of simulated time than a bandwidth of
10 Mbps, the larger number of messages crossing the hubs
limits the concurrency of the simulation.

Figure 9 shows the concurrency when varying the number
of LAN nodes and the hub bandwidth for a fixed number of
16 campus networks. With 2 LAN nodes, only 2,000 kbps
of traffic crosses each hub, i.e., there is a network bottleneck
in the run with 1 Mbps only. Accordingly, the results with
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Figure 8: Results of sensitivity of the TCP/IP model varying
the number of campus networks.

0

20

40

60

80

100

120

140

160

180

2 4 8 16 32

C
: 

C
ri
ti
c
a

l 
P

a
th

 C
o

n
c
u

rr
e

n
c
y

Number of Nodes per LAN

Bottleneck Bandwidth: 1,000 Mbps
              100 Mbps

              10 Mbps
              1 Mbps

Figure 9: Results of sensitivity analysis of the TCP/IP
model varying the number of receiving nodes per LAN.

hub bandwidths of 10 Mbps and above are nearly identical.
For 4 and more LAN nodes, the magnitudes of the results
do not simply follow the hub bandwidth. Instead, the re-
sulting concurrency depends on three factors: the rate of
message generation by the senders, the rate at which the
messages pass through the network as dictated by the hub
bandwidth, and the total number of message flows. With
1,000 Mbps, the concurrency is nearly independent of the
LAN node count. The reason is that, since there are no
network bottlenecks, each doubling of the LAN node count
doubles the total number of messages per unit of time, but
at the same time doubles the number of messages at each
hub, i.e., double the original number of events is processed
in double the number of executions.

When disregarding the costs of synchronization and com-
munication during a simulation run, the concurrency with 32
campus networks suggests the use of up to about 200 cores
for execution of the model. As the concurrency depends
strongly on the number of campus networks, efficient paral-
lel execution on many-core devices requires a large number
of campus networks in relation to the number of cores.

5.2.3 Analytical Concurrency Estimation
For the analysis, we first assume that there are no network

bottlenecks. Then, the total number etotal of events per
TCP flow and simulated second in the steady-state can be
estimated as follows:

mapp = rapp/sm

epayload = mapp(3 + 2nfw + 2)

eack =
mapp

2
(1 + 2nfw + 2)

etotal = epayload + eack

Here, rapp is the desired bitrate of each application that
generates a TCP flow. sm is the size of each message in-
cluding headers. In our example, TCP and IP add 20 bytes

229



of header data each to a payload of 512 bytes. mapp is the
message rate per flow. nfw is the average number of for-
warding nodes between a sender and a receiver. Using these
values, the total event rate is given by the sum of the pay-
load and acknowledgement event rates. This calculation can
be repeated for each TCP flow to determine the total event
rate of the simulation.

Up to this point, we did not consider network bottle-
necks. We model these by considering two message rates:
as above, mapp is the target message rate of the application.
mtm is the number of messages actually transmitted per
second when considering network bottlenecks. Of course,
network bottlenecks must be identified first. For complex
topologies, an approximation can be calculated using com-
mon flow algorithms. In the topology considered here, hubs
with low bandwidth are obvious network bottlenecks. All
other forwarding nodes handle substantially smaller num-
bers of events.

When considering network bottlenecks, the event rate es-
timation must be based on the rate of actually transmitted
messages mtm per flow according to the maximum message
rate mhubs of the hubs resulting from their bandwidth:

mapp = rapp/sm

mtm = min(mhubs,mapp)

epayload = mtm(2 + 2nfw + 2) +mapp

eack =
mtm

2
(1 + 2nfw + 2)

etotal = epayload + eack

The estimation makes the simplifying assumption that the
combination of all TCP flows fully saturates the capacity
of network bottlenecks. Since TCP only approximates the
channel capacity, the average number of messages in flight
will be somewhat lower than our estimation. In Section 6,
we evaluate how strongly network bottlenecks affect the ac-
curacy of the concurrency estimation.

We now explicitly consider the event rates of two cate-
gories of nodes: hubs and senders. Each of the ncns campus
networks holds a single hub and four senders:

nhubs = ncns

nsenders = 4ncns

Since each campus network contains both senders and re-
ceivers, the number of TCP flows crossing each hub is 2 ×
nlan nodes × ncns.

The total event rate for the hubs is thus:

ehubs = 2nhubs × (mtm +
mtm

2
)

Again, each forwarded message generates one event for re-
ception and one for transmission and there is one acknowl-
edgement for every other message.

The total event rate for the senders is:

esenders = nflows × (mapp + 2mtm + 2× mtm

2
)

As before, for the concurrency estimation, we assume that
ehubs events are placed in the lookahead window with the
same per-event probability for each hub. The corresponding
assumption is made for the senders. Using our analytical
model, we can now estimate the largest expected number of
events in each lookahead window for a single node in either

Figure 10: Event patterns in the wireless model.

the hub or the sender group. The result m is the number of
parallel event executions required to process a single looka-
head window. The estimated concurrency is then etotal/m.

Discussion: From the analysis, we can gather relation-
ships between properties of the considered network model
and the model’s concurrency: first, since parallel simulation
progress is determined by the simulation bottlenecks, a large
number of events for non-bottleneck nodes is beneficial for
high concurrency. Hence, given the fact that each hop for-
warding a message generates two events, longer path lengths
increase concurrency. Second, mtm decreases if there are
network bottlenecks, whereas mapp is independent of net-
work bottlenecks. Therefore, it is possible that the total
event rate is dominated by events generated at senders, even
though all traffic passes through the hubs. Because of this,
there is an inverse relationship between network and simula-
tion bottlenecks: hubs that do not limit the message rate are
simulation bottlenecks, but no network bottlenecks, whereas
hubs that do limit the message rate are network bottlenecks,
but no simulation bottlenecks.

5.3 Wireless Ad-Hoc Communication
As a third example, we study the concurrency of a model

of a wireless ad-hoc network. The model’s analysis forms a
counter-example to the approach used to determine the con-
currency of the previous two models: due to the broadcast
nature of the wireless medium and the avoidance of message
collisions, we can express the concurrency directly based on
an analysis of individual transmissions, without reliance on
the statistical approach presented in Section 4.2.

Ad-hoc networks are frequently studied in the context
of car-to-car communication, where cars establish a mutual
awareness by periodic transmission of beacon messages hold-
ing, e.g., the sender’s current position. The mutual aware-
ness can be leveraged by applications to increase road safety
and efficiency. A frequent focus of simulation studies in this
area lies in investigating the channel load resulting from the
beacon traffic.

In the scenario considered here, a configurable number
of nodes are positioned randomly on a linear 100m road
segment. The nodes broadcast beacons at a configurable
rate, each beacon comprising 400 bytes of data including
headers. Communication is performed with a data rate of
6 Mbps over a wireless channel using a CSMA-based MAC
layer, i.e., nodes check for activity on the channel and delay
their transmissions if necessary.

5.3.1 Event Patterns
We study the event patterns resulting from the described

model by reference to ns-3. A single transmission comprises
the following sequence of events (cf. Figure 10): given no
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ongoing transmission on the channel, a SendPacket event of
the transmitting node represents the start of a transmission
and creates a Receive event for every remaining node as well
as a single EndTxNoAck event reflecting the completion of
the transmission. For each receiver that successfully detects
the beacon, the Receive event creates a corresponding End-

Receive. In total, each successful transmission is reflected
by a minimum of 1 + (n− 1) + 1 = n+ 1 and a maximum of
1 + (n− 1) + 1 + (n− 1) = 2n events.

A CSMA-based MAC layer aims to reduce the probabil-
ity of collisions. In case the channel is busy, the initial
SendPacket event creates a single AccessTimeout event that
takes the role of a SendPacket at a later point in simulated
time. In the following, we refer to SendPacket events only,
since AccessTimeout events are handled identically during
simulation. We refer to SendPacket events by which a busy
channel is detected as Probe events.

There are two situations in which interactions between
multiple transmission attempts affect concurrency. First,
collisions occur in the case of two nodes starting to send at
the same time. Second, a SendPacket event will detect a
busy channel and delay the corresponding transmission, so
that no Receive events are created until the next attempt.
The occurrence probabilities of both situations depend on
the channel load. Our concurrency estimation disregards
overlapping transmissions, but does consider Probe events.

5.3.2 Sensitivity Analysis
The sensitivity of the network model’s concurrency to the

beacon rate and the number of nodes was analyzed using
event traces covering 10s of simulated time after a warm-
up time of 30s. Figure 11 shows that the concurrency in-
creases close to linearly with the number of nodes in the net-
work. For extremely large channel loads, collisions increase
the concurrency substantially. Further, slight differences in
concurrency for lower beacon rates are caused by varying
numbers of Probe events.

In the considered parameter combinations, we measured
concurrency values below 100 even for large node densities.
Due to the limited spatial extent of 100m of the network,
larger node counts lead to unrealistically large channel load.
Parallel execution on many-core devices should hence be
considered when studying scenarios with larger spatial ex-
tent that support larger numbers of nodes under realistic
channel loads.

5.3.3 Analytical Concurrency Estimation
To estimate the concurrency in the model analytically, we

need to be aware of the lookahead that will be available in
a simulation run. Simulations of wireless networks are well-
known to exhibit only small amounts of fixed lookahead.
Due to the broadcast nature and limited spatial extent of
wireless networks, transmissions pertain to all nodes in prox-
imity of the sender, and the time delta between transmission
and reception is quite small. Hence, a fixed lookahead value
considering the minimum latency between any two nodes of
the network can be insufficient for high concurrency. The
literature proposes the use of model knowledge regarding
OSI layers 2 and above to enable larger lookahead values [8,
16]. If it is known at simulation runtime that according to
the current state of, e.g., the MAC or application layer of
the nodes, new events up to a certain point in time can be
ruled out, the lookahead can be extended to this point.
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Figure 11: Results of sensitivity analysis of the wireless net-
work model, varying the number of nodes and the beacon
rate.

Figure 12: Concurrency in a single transmission in the wire-
less model. Sets of events surrounded by dashed lines can
can be executed concurrently.

For the analysis, we consider the case where model knowl-
edge provides sufficient lookahead to cover all events that
have no pending precedence relationships. Figure 12 de-
picts the event patterns in the model, grouping concurrent
events. The initial SendPacket event creates n− 1 Receive

events as well as a single EndTxNoAck event. Since execution
of the SendPacket event triggers the creation of all other
events, it cannot be executed in parallel with any further
events. Now, all Receive events can be executed in parallel
together with the EndTxNoAck, n events in total. Next, all re-
maining SendPacket events are executed concurrently with
EndReceive events of nodes that execute no Probe events
and receive the current packet successfully.

We now consider the number of parallel event executions
required to process the Probe events. Since events for each
node must be executed in timestamp order, up to n events
can be executed at the same time. For a given simulation run
of T transmissions with ft Probe events during transmission
t, the average number of event executions required to process
all Probe events is rp = 1

T

∑T
t=1d

pt
n
e, the value of which can

be determined from a sequential simulation run.
Now, we estimate the model’s concurrency by dividing

the number of events per transmission by the number of
executions required. The estimated concurrency is

Cest =
1 + (n− 1)+ 1+ s(n− 1)+ p

3 + rp
=
n+ 1+ s(n− 1)+ p

3 + rp

Discussion: The simplicity of the analysis reflects the
simplicity of the event precedence relation in the wireless
model: the available concurrency results from the indepen-
dent reception events evenly distributed among all receivers.
Hence, in contrast to the previous two network models, we
can estimate the critical path concurrency directly without
estimating YAWNS concurrency first.
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Figure 13: Validation of analytical concurrency estimations
with reference to trace-based results.

6. EVALUATION
In this section, two questions are addressed:
Question A: Are the concurrency values determined by

YAWNS-based analysis and critical path analysis sufficiently
close to use these methods interchangeably? Our analytical
model estimates concurrency according to YAWNS. How-
ever, since critical path analysis determines the largest pos-
sible concurrency, it must be considered the reference for
concurrency estimation.

Question B: Does our analytical model estimate critical
path concurrency of the considered network models with suf-
ficient accuracy? A correspondence between the estimation
and the critical path analysis results is an indication that our
network model analysis captured the key influencing factors
for the models’ concurrency, clarifying the relationship be-
tween properties of the simulated networks and the resulting
concurrency.

Figure 13 depicts the general work flow for validation of
the concurrency estimation results for the parameterizations
of each network model. Based on knowledge of the network
model and, if necessary, on a sequential simulation run, the
inputs required by the generic analytical model are deter-
mined. Event traces generated during the sequential run
are processed programmatically using YAWNS-based anal-
ysis and critical path analysis. To answer question A, the
results of the YAWNS-based analysis and critical path anal-
ysis are compared. To answer question B, the analytical
estimate is compared to the critical path analysis result.

We first consider question A and focus on the results for
the Kademlia and TCP/IP models, as the concurrency of the
wireless network model was estimated directly with reference
to critical path analysis. The parameters of the Kademlia
model were varied as follows:

• n ∈ {1,000; 10,000; 100,000}

• λ ∈ {100; 1,000; 10,000}

• α ∈ {1; 2; 4; 8; 16; 32}

In addition, we configured the probability of packet loss as
0%, 25%, 50% and 75%.

The TCP/IP model was configured as follows:

• Number of CNs ∈ {2; 4; 8; 16; 32}

• Number of nodes per LAN ∈ {2; 4; 8; 16; 32}

• Bottleneck bandwidth ∈ {1; 10; 100; 1,000} Mbps

Figures 14 and 15 compare the results of YAWNS-based
analysis to critical path analysis results. In both cases,
YAWNS-based analysis determines lower concurrency values
than critical path analysis. The deviation increases slightly
with larger concurrency. However, even for very large con-
currency values, YAWNS determines concurrency values be-
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Figure 14: Comparison of YAWNS concurrency (Y) with
critical path concurrency (C) of the Kademlia model.
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Figure 15: Comparison of YAWNS (Y) with critical path
concurrency (C) of the TCP/IP model.
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Figure 16: Comparison of our analytical estimate (Yest) with
critical path concurrency (C) of the Kademlia model.
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Figure 17: Comparison of our analytical estimate (Yest) with
critical path concurrency (C) of the TCP/IP model.

tween a factor of 0.6 and 1 of critical path analysis. We con-
sider the correspondence sufficiently close to evaluate the
parallelization potential of network models.

Now, we address question B and compare the analyti-
cal estimate with the critical path analysis results. Fig-
ure 16 shows the results for the Kademlia network model.
As in the comparison of YAWNS and critical path analysis,
a slight underestimation between the analytical model and
critical path analysis can be observed in many cases. How-
ever, the model captures critical path analysis sufficiently so
that, apart from few outliers, the model determines a factor
between 0.5 and 1.5 of the reference value over a vast range
of model parameters and resulting concurrency values.

Similarly, the results for the TCP/IP model depicted in
Figure 17 show a close correspondence between the analyt-
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(b) Results from simulation run.

Figure 18: Expected and observed distribution of the num-
ber of events per node in the active category in each looka-
head window for a run of the Kademlia model with n =
1, 000, λ = 300, α = 8, and 0% packet loss.

ical estimate and critical path analysis results. Here, a re-
peating pattern emerges in the plotted results: our network
model analysis assumed a full utilization of the channel ca-
pacity in the simulated network. With decreasing hub band-
width, the simulated network deviates increasingly from full
utilization, leading to an overestimation of concurrency.

The analytical approach used to estimate the concurrency
of the Kademlia and TCP/IP network models makes the as-
sumption of a uniform distribution of events within each
lookahead window over the nodes of each of the identified
categories. If the assumption of a uniform distribution of
events to nodes holds, we expect a binomial distribution of
the number of events assigned to each node in each looka-
head window. Since this section already shows the validity
of the concurrency estimations of our analytical model, we
limit our illustration of the validity of our assumption of uni-
form distribution to two example scenarios. We determined
the appropriate parameters for the binomial distribution ac-
cording to the observed number of events per lookahead win-
dow, and the number of nodes in the considered node cate-
gory. Figure 18 compares the expected binomial distribution
with the number of events per node of the active category
(cf. Section 5.1) actually observed in an exemplary simula-
tion run of the Kademlia network model. We can see that in
the considered scenario, the simulation results are matched
closely by the binomial distribution. Figure 19 compares the
expected binomial distribution with the number of events
per node of the hub category (cf. Section 5.2) in an exam-
ple run of the TCP/IP network model. Here, a deviation in
the distributions is caused by the fact that in the network
model, groups of two events each are scheduled with only a
small delta in simulated time. Hence, in almost all cases, an
even number of events is assigned to an individual node in
each lookahead window.

For validation of the estimations for the wireless network
model, we varied the number of nodes in the network be-
tween 2 and 100. Figure 20 relates the estimated concur-
rency Cest to the results from critical path analysis of event
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(b) Results from simulation run.

Figure 19: Expected and observed distribution of the num-
ber of events per node of the hub category in each lookahead
window for a run of the TCP/IP model with 16 campus net-
works, 1 node per LAN, and 1Gbps of hub bandwidth.
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Figure 20: Comparison of our analytical estimate (Cest)
with critical path concurrency (C) of the wireless model.

traces. For small networks, the estimation is nearly identi-
cal to the critical path results. The estimation becomes too
pessimistic only in cases of extreme channel load, where col-
lisions, which are not considered by the analytical estimate,
are frequent. The largest deviation was measured in a sce-
nario with 100 nodes and a beacon rate of 80Hz, where the
estimation amounts to 73.5% of the concurrency determined
using critical path analysis.

7. DISCUSSION
Our estimation approach requires the identification of sim-

ulation bottlenecks and a classification of nodes according to
the number of assigned events. These requirements expose a
fundamental challenge in performance estimation of simula-
tions: simulation is typically applied when studying systems
whose behavior cannot be easily modeled in a static form,
such as by mathematical equations. If it is possible to model
the runtime behavior of the model a priori, simulation is un-
necessary. Hence, in case the aspects of the model’s runtime
behavior that are to be determined using simulation are also
critical to the performance of the simulation, performance
estimation is non-trivial.

Depending on the network model under study, it is pos-
sible to approximate the required statistics by performing
brief sequential simulation runs. For instance, if the lookup
duration is the desired metric when studying the Kademlia
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model, yet the lookup duration is critical to the model’s con-
currency, a brief sequential simulation run can be performed
to approximate the average lookup duration. In the cases
considered here, such an estimation was sufficient to achieve
a reasonable level of estimation accuracy.

8. CONCLUSION
We presented an analytical model to estimate and under-

stand the concurrency of network simulation models. A sen-
sitivity analysis and investigation of event patterns showed
the factors determining the concurrency of three network
models and the differences in their potential for paralleliza-
tion. Given a modest amount of knowledge of the network
model and information from sequential simulation runs, the
analytical approach estimates concurrency with high accu-
racy over a large range of scenario parameter settings.

The key relationships between the properties of the con-
sidered network models and their concurrency are as fol-
lows: the concurrency of the considered peer-to-peer net-
work model is strongly dependent on the number of nodes
actively initiating traffic and limited by the total number
of nodes, whereas the exact network topology has only lit-
tle impact on concurrency. The peer-to-peer network model
suggests the use of hundreds of cores for simulation. In the
considered model of TCP/IP in a fixed topology, concur-
rency increases with larger numbers of hops between senders
and receivers and, to a moderate degree, with larger band-
width of bottleneck routers. The concurrency of a wireless
network model was shown to scale in proportion to the num-
ber of nodes in the network, but is limited by the spatial
extent of the scenario.

In future work, we aim to move towards a more gen-
eral classification of network models by identifying recur-
ring event patterns in models with similar topologies and
communication patterns.
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