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Abstract
Applying simulation-based optimization to city-scale traffic signal optimization can be challenging due to the large search
space resulting in high computational complexity. A divide-and-conquer approach can be used to partition the problem
and optimized separately, which leads to faster convergence. However, the lack of coordination among the partial solu-
tions may yield a poor-quality global solution. In this paper, we propose a new method for simulation-based optimization
of traffic signal control, called spatially iterative coordination for parallel optimization (SICPO), to improve coordination
among the partial solutions and reduce synchronization between the partitioned regions. The traffic scenario is simu-
lated to obtain the interactions, which is used to spatially decompose the scenario into regions and identify interdepen-
dencies between the regions. Based on the regions, the problem is divided into subproblems which are optimized
separately. To coordinate between the subproblems, the interactions between partial solutions are synchronized in two
ways. First, multiple iterations of the optimization process can be executed to coordinate the partial solutions at the end
of each optimization process. Second, the partial solutions can also be coordinated among the regions by synchronizing
the trips across the regions. To reduce computational complexity, parallelism can be applied on two levels: each region is
optimized concurrently, and each solution for a region is evaluated in parallel. We demonstrate our method on a real-
world road network of Singapore, where SICPO converges to an average travel time 21.6% faster than global optimiza-
tion at 62.83 shorter wall-clock time.
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1. Introduction

Rising population densities in cities around the world lead

to an increase in traffic congestion.1 As traffic signal tim-

ings have a strong influence on traffic flow,2 their optimi-

zation is, therefore, essential to alleviate congestion and

improve the efficiency of the transport system. However,

real-world experiments to evaluate the objective of traffic

signal control problems are often prohibitively expensive

to set up, especially if the projects did not yield expected

results.3 Simulation-based optimization is one of the more

cost-effective methods that can address the problem of

city-scale traffic signal control without real-world experi-

mentation. A traffic system can be represented by micro-

scopic agent-based traffic simulation, where each agent is

usually modeled as a driver-vehicle unit that makes

autonomous decisions based on behavioral models and its

environment. The emerging behavior resulting from the

interactions of single agents enables the study of system

parameters such as traffic flow.

Urbanization also leads to an increase in road network

size, which in turn increases the complexity of solving

traffic signal control problems. For example, the city state
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of Singapore has a road network comprising more than

3, 440 roads and 164 km of expressways,4 including 2449

traffic signal-controlled intersections.5 A city-wide traffic

signal control problem can be considered as a large-scale

spatial optimization. Traffic signal timing optimization has

been solved using methods based on metaheuristic methods

such as genetic algorithm (GA),6 –8 particle swarm optimiza-

tion,9,10 or meta-models.11,12 We find, however, that these

methods have mainly been employed to optimize only a sin-

gle or a few intersections.13 The literature on the optimization

of traffic signals on city-scale road networks is still scarce.

The computational complexity of large-scale traffic sig-

nal control problems is high since the constraints and the

objective functions associated with the problems are

resource intensive and the size of the decision or objective

space is large.14 Hence, the application of metaheuristic

algorithms to the traffic signal optimization of large-scale

road networks can be computationally expensive.15 The

large search space of the problem (i.e., traffic signals)

makes naive sequential optimization methods infeasible

due to their slow convergence.16 In addition, traffic signal

coordination is an EXP-complete problem,17 which ren-

ders the optimization of large traffic networks in cities

intractable in practice using naive optimization methods.

Moreover, when applied at a large-scale, microscopic traf-

fic simulation still faces computational challenges.18

One way to solve the large-scale optimization problems

is to split them into smaller subproblems.19 First, the origi-

nal problem is decomposed spatially into multiple subpro-

blems. Then, the subproblems are optimized in parallel

via an individual evolutionary algorithm (EA) to obtain the

partial solutions. The global solution is obtained by combin-

ing the partial solutions. When evaluating the partial solu-

tions using simulation, parallel simulation can also be used.

There are several advantages in the divide-and-conquer

strategy for optimization. First, decomposition of the prob-

lem allows the subproblems to be solved in parallel, which

speeds up the optimization process. Second, through the

proper decomposition of the problem, the ‘‘curse of dimen-

sionality,’’ i.e., the rapid deterioration in performance with

an increase in the number of decision variables, can be

alleviated to some extent.20 Finally, solving each subpro-

blem separately maintains good solution diversity21 and

increases the robustness of the whole optimization process

against the errors and failures in dynamic environments.22

However, there can be coordination issues using a naive

divide-and-conquer strategy. Due to the complex interde-

pendencies in most practical optimization problems, com-

bining partial solutions may result in a poor-quality global

solution.23 Without considering interaction among regions,

although optimal partial solutions could be obtained for

each region, they would not form an optimal global solu-

tion when being simply put together. The synchronization

between partitions is also another issue as it becomes a

bottleneck when the scale of the network is large or when

there is a strong coupling between the traffic signals.24

To resolve the coordination and synchronization issues,

we proposed a novel parallel simulation-based optimiza-

tion method called spatially iterative coordination for par-

allel optimization (SICPO) for traffic signal optimization.

Through an initial simulation, the optimization scenario is

partitioned spatially into regions according to the interac-

tions sampled from the simulation. The interactions are

also used to identify the interdependencies between the

regions. Based on the regions, the problem is divided into

subproblems, where each subproblem optimizes a region

separately using an EA. To coordinate among the subpro-

blems, the interactions between partial solutions are syn-

chronized in two ways. First, multiple iterations of the

optimization process are executed so that new interactions

can be sampled using the improved global solution from

each iteration. Second, the partial solutions can also syn-

chronize the interactions during the EA based on the inter-

dependencies between the regions. Hence, multiple

iterations of optimization are executed until the global

solution converges.

Our contributions can be summarized as follows:

� Problem decomposition: Spatial decomposition is

used to partition the optimization scenario, i.e., road

network and traffic simulation, into regions which is

used to decompose the problem into subproblems. The

spatial decomposition also determines the grouping of

the decision variables based on their spatial positions

and the interdependencies of the subproblems based

on the interactions between regions.
� Coordination among partial solutions: To reduce

synchronization between the regions and coordinate

among the partial solutions, the interactions are syn-

chronized after each iteration and during subpro-

blem optimizations.
� Reducing computational complexity: To reduce

the computational complexity, parallelism for the

optimization method can be applied on two levels:

(1) each subproblem is optimized concurrently, and

(2) each partial solution for a region is evaluated in

parallel. During the evaluation of the global solu-

tion, parallel simulation can also be used.
� Applicability to real-life problems: A real-world

road network of Singapore is used to demonstrate

the applicability of our approach.

The remainder of the paper is structured as follows: We

introduce the traffic signal control problem in Section 2.

We propose our novel parallel method for large-scale traf-

fic signal optimization in Section 3. Section 4 evaluates

the convergence and runtime of the new method. Section 5

discusses the trade-off and limitations in our method. We
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discuss related works in Section 6. Section 7 concludes the

paper and discusses the avenues for future work.

2. Traffic signal control problem

In this section, we formulate the traffic signal control prob-

lem based on the road network model used as described in

Viswanathan et al.25 A traffic signal phase is defined as

‘‘the right-of-way, yellow change, and red clearance inter-

vals in a cycle that is assigned to an independent traffic

movement or combination of traffic movements.’’26 A

common cross-intersection with two-directional traffic is

shown in Figure 1, where there are four traffic signal

phases. The directions of traffic allowed in each phase are

shown in the figure. In phase 1, only the traffic indicated

by the red arrows is allowed. All other traffic directions

are shown a red light. Switching from phase 1 to phase 2

means switching the previously green traffic directions to

red and showing a green light to the traffic directions indi-

cated by green arrows in the illustration. Hence, the traffic

controller will rotate the green phase among the phases

depending on the time allocated for each phase. The cycle

time is the time required to complete the sequence of

phases, i.e., time to switch from phase 1 to phase 4, and

back to phase 1.

We consider the problem of generating traffic signal

patterns that minimize the average travel time of vehicles

by controlling the timings of green phases at a set of inter-

sections. Assuming the overall cycle time is fixed, the

green time ratio is defined as the ratio of effective green

time of a phase to the cycle time. To formulate the prob-

lem of traffic signal control, X is defined as a vector of

real values, representing the green time ratio for each of

the phases in the traffic signal intersections in a road net-

work. I is the set of all traffic signal intersections in a road

network. For each intersection i 2 I, p refers to the phase

number of the traffic signal, where Pi is set of phases for

intersection i. X ½i, p� refers to the green time ratio of inter-

section i for phase p.

The traffic signal optimization problem can be formu-

lated as:

arg minf (X )
s:t:X ½i, p� 2 IR+, 8i 2 I, 8p 2 PiP

p2Pi

X ½i, p�= 1, 8i 2 I

X ½i, p�ø tmin, 8i 2 I, 8p 2 Pi:

ð1Þ

where the objective function f (X ) represents the result of a
simulation run that returns the average travel time under

the green time ratios X , and tmin is the minimum ratio for a

phase. For example, given a cycle time of 60 s, an intersec-

tion has four phases, where phases 1, 2, 3, and 4 have 20 s,

10 s, 20 s, and 10 s green time, respectively. The green

time ratios for the intersection 1 are 1
3
, 1
6
, 1
3
, 1
6

� �
. To reduce

the dimensionality of the problem, the traffic signal offsets

are not considered in this problem.27

3. Spatially iterative coordination for
parallel optimization

First, we described the decomposition of the traffic signal

control problem. Then, we explain our proposed method

for improving coordination and reducing synchronization

for city-scale traffic signal optimization in detail.

3.1. Decomposition of traffic signal optimization

The objective function f (X ) returns the average travel time

given the green time ratios X as the objective function

parameter, which is obtained through traffic simulation.

The data for the traffic simulation also include input para-

meters such as the directed graph G representing the road

network and the travel demand given by a set of trips T.

The trips represent the interactions in the simulation. A

trip is represented by a triple (td , vo, vd) consisting of the

departure time td , origin node vo, and destination node vd .

Each trip is handled by an agent in the simulation, where

the agent represents a vehicle that starts a trip according to

the departure time from the origin node to the destination

node. The traffic simulation can be formulated as:

R=sim(G,T,X ) ð2Þ

where the set of trajectories for each agent, R, are returned

as the simulation output. A trajectory is a sequence of

tuples (t, v), indicating the agent reaching node v at time t.

Given a trajectory R is a sequence of tuples

(t0, v0), � � � , (tn�1, vn�1), the total travel time of a

Figure 1. Cross-intersection with four traffic signal phases.
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trajectory T can be calculated as tn�1 � t0. Hence, the

objective function f (X ), which determines the fitness Y

given a solution X , returns the average travel time T for

all agents in the simulation.

Spatial decomposition is used to divide the road net-

work into regions and the objective function into many

partial functions, such that each partial simulation is repre-

sented by:

Rj =sim(Gj,Tj,Xj) ð3Þ

The road network G is decomposed spatially into a set

of regions G, where Gj 2 G is a subgraph of G. Xj is the

set of green time ratios for the traffic signals located in the

region Gj. Similarly, we can calculate the average travel

time for all agents in a region Gj using the trajectories Rj.

Then, the optimization problem for each partial function,

fj, can be formulated as:

argmin fj(Xj)
s:t: Xj½i, p� 2 IR+, 8i 2 Ij, p 2 PiP

p2Pi

Xj½i, p�= 1, 8i 2 Ij

Xj½i, p�ø tmin, 8i 2 Ij, 8p 2 Pi:

ð4Þ

where Ij is the set of intersections in region Gj. After parti-

tioning the interactions among the regions, each partial

function can be optimized separately to return the opti-

mized green time ratio Xj.

To partition the interactions among the regions, the set

of trips T is divided spatially, where the time and node

where each agent crosses a region are required. First, the

whole network is simulated to obtain a set of trajectories

R taken by each agent based on the trips T. Based on the

partition boundaries, the trajectories taken by each agent

are cut into segments. When an agent crosses the partition

boundary, the time and node of the crossings are used to

generate the set of subtrips Tj. For example, an agent

crosses from regions G1 to G2 based on a trip (ta, va, vc),
where va 2 G1 and vc 2 G2. After executing a simulation

on the whole road network G, the agent crosses from

regions G1 to G2 at node vb at time tb based on the trajec-

tory of the agent. Hence, the trip is divided into two seg-

ments (ta, va, vb) and (tb, vb, vc), and returned as a subtrip

for the respective regions. The interdependencies between

the regions can also be identified based on the outgoing

trips from a region. By recording the outgoing trips from a

region, we can also identify the neighboring regions that

are dependent on the region.

The departure time of a subtrip depends on the sam-

pling of the trip that is done on the whole network. After

performing the partial function optimization, the optimized

green time ratios for each partition are combined. The next

iteration of the sampling process utilizes the optimized

green time ratios in the simulation. Hence, the sampling

process is also dependent on the optimized green time

ratios obtained in partial function optimization. This cre-

ates a cyclic dependency between the sampling process

and partial function optimization, as shown in Figure 2.

Therefore, an iterative approach is required.

3.2. Method overview

An overview of the proposed method is shown in Figure 3,

where simulation is used for the evaluation of the objective

function. First, an iterative search is performed on the

objective function to improve the solution across iterations

until reaching convergence. Second, a parallel search

decomposes the problem spatially into subproblems, i.e.,

dividing the objective function into partial functions, that

can be optimized in parallel. Third, partial function opti-

mization optimizes the partial function to search for better

partial solutions using an EA, where each solution is eval-

uated in parallel. After the partial function optimization,

partial solutions are combined to obtain a new solution for

the objective function. The partial solutions can be coordi-

nated at the end of each parallel search (see Figure 3(a))

and cooperatively co-evolve among partial function opti-

mizations (see Figure 3(b)). The new solution is evaluated

and iteratively improved until convergence is reached. The

following subsections describe each process in detail.

3.3. Iterative search

At each iteration, optimization will be applied to the cur-

rent solution to find a new solution, and the fitness of the

new solution is evaluated. The new solution is accepted if

there is a significant improvement in the fitness of the

solution. Otherwise, the optimization process terminates.

Iterative Search is the first process flow shown in

Figure 3. Initially, the initial solution X 0 is randomly

Figure 2. Cyclic dependency between the sampling process
and partial function optimization. Initial sampling will obtain a set
of trajectories R that will be used to generate the subtrips Tj.
Partial function optimization will generate new green time ratios
Xj, which are combined and fed back to the sampling process.
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generated. The initial solution X 0 is evaluated by simulat-

ing the whole scenario to obtain the initial fitness, Y 0.

Parallel search is performed on the current solution X i to

find a new solution, X i+ 1. The new solution is evaluated

using the whole scenario to obtain the new fitness, Y i+ 1.

This evaluation also represents iteration-level coordina-

tion across regions (Figure 3(a)). The coordination is done

by using the trajectories from the simulation output to con-

struct the subtrips for the next iteration, as described in

Section 3.1. Hence, the subtrips are updated with better

arrival times from neighboring regions.

The convergence of the algorithm is determined by the

relative improvement, DY i+ 1, which is measured by:

DY i+ 1 =
Y i

Y i+ 1
ð5Þ

If the improvement is not better by a threshold of

YI , the algorithm will terminate and return the new

solution, X i+ 1.

3.4. Parallel search

Parallel Search is the second process flow shown in

Figure 3, which returns improved green time ratios, X i+ 1,

based on the current solution X i. Spatial decomposition is

achieved by partitioning the whole road network G along

with input X i and trips T based on the intersection flows

and the number of traffic signals. The traffic flow at each

node is the number of agents crossing the node per hour.

Based on the trajectories, R, obtained from the simulation

of the entire road network (Figure 3(a)), the traffic flows

can be calculated based on the trajectories taken by all

agents. Hence, the intersection flow is the sum of the traf-

fic flows at an intersection.

An edge cut is determined on the road network using

METIS28 given the maximum number of regions (NR),
with the intersection flows and the number of traffic sig-

nals as the vertex weights. This aims to balance the num-

ber of decision variables (i.e., number of traffic signals)

and workload per region. If each region only consisted of

a single traffic signal, many trips would need to be syn-

chronized among the regions. Moreover, there will be

large discrepancies between the partial solutions and glo-

bal solution due to the lack of cooperation between the

partial function optimizations. On the contrary, if the num-

ber of regions is small, the evaluation time per region will

be high due to the large regions and more iterations will

be required for convergence. If there is an imbalance in

the weights, METIS can return fewer than the maximum

number of regions.

The subtrips are generated based on the partition bound-

aries, as described in Section 3.1. After spatial decomposi-

tion, each region is optimized in parallel using partial

function optimization. As the traffic flows improve over

the iteration, the road network needs to be re-partitioned

for every iteration. Due to the decomposition, the dimen-

sion of the parameter space is divided by the number of

regions. The reduction in the dimensions of the parameter

Figure 3. Our proposed method can be broken down into three process flows: (a) iterative search, (b) parallel search, and (c)
partial function optimization. The multiple stacked rectangles are parallel processes. Bold rectangles depict the simulation processes.
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space can enable the search to converge faster. The level

of parallelism is equal to the number of partial functions.

Usually, a reduction operation is performed on the

results returned by the optimization of partial functions,

such as summation of the results. With SICPO, the set of

partial solutions is combined using a concatenation opera-

tion (�) to obtain the new solution X i+ 1. The coordina-

tion between the partial solutions is performed at the end

of the partial function optimization when the new solution

is evaluated (Figure 3(a)).

3.5. Partial function optimization

Each partial function is optimized separately using an EA.

In this paper, we used the genetic algorithm (GA) as the

EA. A population of candidate solutions representing the

partial problem is evolved toward better solutions. Each

solution has a chromosome containing a set of values rep-

resenting a vector of green time ratios in each partitioned

region.

The generation index is defined as g. First, the initial

population P0 of NP solutions is randomly initialized.

Each solution k in the population Pg represents the green

time ratios X
i, g, k
j in iteration i and region j,

Pg = ½X i, g, 0
j ,X i, g, 1

j � � � ,X i, g,N P�1
j �. Next, the fitness of the

population Pg is evaluated in parallel. The fitness function

is a partial function fj(X
i, g, k
j ) that evaluates the average

travel time for all agents traveling through region Gj based

on the green time ratios X
i, g, k
j and subtrips Tj. Since each

solution can be evaluated independently, the fitness eva-

luation can be carried out in parallel to reduce the running

time per generation without the need for synchronization.

After the fitness evaluation, genetic operations are

applied to generate the next population Pg + 1. First, Hall-

of-Fame (HoF) is applied to retain the top NH individuals

for the next generation. Tournament selection is then used

to select the remaining individuals for evolution, where

NT individuals are drawn from the current population and

the best individual is selected. Next, one point crossover of

probability rc is applied to the selected individuals, where

a single point is chosen and genes from the two parents on

the right of the point are swapped to generate the new off-

spring. Then, uniform mutation of probability rm is per-

formed where each gene of the selected individual has a

probability of 0.1 to select a new green time ratio between

0 and 1. After mutation, the green time ratios are normal-

ized to ensure the sum of the green time ratio is one. The

newly generated offspring are combined with the HoF

individuals to form the next generation. This is repeated

until the maximum number of generations NG is reached.

The solution with the best fitness value over the entire GA

run is returned.

3.6. Trip synchronization

As the regions are not synchronized during the solution

evaluations, there is no coordination among the partial

function optimizations. For example, assume an agent

crosses from regions G1 to G2. The departure time of the

agent at G2 depends on the arrival time of the agent at the

partition boundary in G1. When the optimization improves

the traffic flows in G1, the agent can arrive at the bound-

ary earlier (or later). However, since the coordination

between the regions is only done at the iteration level atffi
in Figure 3, this will result in the departure time of the

agent at G2 to be out of date. To address this issue, addi-

tional generation-level coordination is introduced during

the partial function optimizations to synchronize between

the regions. The coordination is done by updating the trips

based on the interdependencies between the regions, i.e.,

the newest arrival time from the neighboring regions.

There are two modes of generation-level coordination:

synchronous and asynchronous. However, generation-level

coordination cannot fully replace iteration-level coordina-

tion. The best arrival times are only achieved when the

partial solution converges to their local minimum. Hence,

these timings can no longer influence the convergence of

the partial function optimization. Although the generation-

level coordination can reduce the discrepancies between

the partial solutions, the global solution still requires an

iterative approach to coordinate between the regions.

In synchronous generation-level coordination, all partial

function optimizations are executed synchronously and

synchronized in every generation. The arrival time of all

trips of the best solution is recorded during the fitness eva-

luation. At the end of each generation, all the partial func-

tion optimizations are synchronized at a barrier. Then, the

departure times of the subtrips are updated based on the

arrival time from the neighboring regions. For example in

Figure 4(a), the arrival times are updated synchronously

between region G1 and region G2. Since the workload in

G2 is higher than G1, G1 needs to wait for synchronization

before exchanging the updated arrival times and only con-

tinues the next generation after synchronization. There will

be an overhead due to the barrier synchronization.

In asynchronous generation-level coordination, all par-

tial function optimizations are executed asynchronously

and synchronized independently of other regions. As the

partial optimization improves the travel time of the sub-

trips, the partial results are fed into the neighboring regions

and the neighboring regions only update the departure

times of the subtrips in the next generation. Each region

does not need to wait for partial results from each genera-

tion of their neighboring regions and continues the next

generation based on the last updated results. In Figure

4(a), the arrival times are updated asynchronously between

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



region G1 and region G2, where the evaluation workload

for G1 is smaller compared with G2. When generation 2 in

G1 completed execution, the arrival times at the bound-

aries are sent to G2. However, since G2 is still executing

generation 1, G1 continues to execute generation 3 based

on the last updated results from G2 (generation 1). On the

contrary, G1 only receives the new timings from G2 at

generation 4. As there is no barrier synchronization, this

reduces the synchronization overhead compared with syn-

chronous coordination. In addition, asynchronous coordi-

nation allows regions with a smaller workload to complete

earlier. However, due to the reduced synchronization,

more generations may be needed comparing to synchro-

nous coordination.

4. Experiments

We conduct experiments to evaluate the effectiveness of

the coordination methods on the convergence and optimi-

zation time for a city-scale scenario. In these experiments,

a parallel microscopic traffic simulator CityMoS18 is used

to simulate vehicular traffic. The agent-based model and

traffic assignment model are described in Viswanathan

et al.25 Two road networks are considered: a synthetic

grid-shaped road network and the large-scale road network

of Singapore. We apply three variations of coordination

methods for optimization (see Table 1): (1) SICPO with

only iteration-level coordination, (2) SICPO with iteration-

level coordination and synchronous generation-level coor-

dination (SICPO-S), and (3) SICPO with iteration-level

coordination and asynchronous generation-level coordina-

tion (SICPO-A).

4.1. Grid network

To investigate the effect of different coordination methods

on the optimization convergence, we evaluate a small-

scale scenario using a synthetic grid-shaped road network.

This experiment was executed on a workstation equipped

with an E5-1650 v2 CPU running at 3.5 GHz and 16 GB

of random access memory (RAM). Figure 5 shows a syn-

thetic grid-shaped road network, which comprises a 43 4
regions with each edge being 100 m in length. The grid

network contains 16 traffic signal intersections. Each inter-

section has four traffic signal phases, as shown in Figure 1.

The traffic flows in the grid network are generated based

on predefined origin-destination pairs and the interarrival

time for the agents. The scenario is executed for a total of

6 h of simulated time. The optimizations are executed 30

times for each scenario to obtain confidence intervals.

The grid network is partitioned into four 23 2 grid net-

works. Figure 5 shows the partition boundary dividing the

grid network into four regions, represented by the dotted

lines. Region 1 comprises f0, 1, 4, 5g intersections, region 2

with f2, 3, 6, 7g intersections, region 3 with f8, 9, 12, 13g
intersections, and region 4 with f10, 11, 14, 15g intersections.

(a) (b)

Figure 4. Trip synchronization between region G1 and region
G2. Each rectangle represents the evaluation workload in a
generation, where the rectangle height represents the evaluation
time: (a) synchronous coordination occurs at every generation
and (b) asynchronous coordination occurs independently of
other regions.

Table 1. Three variations of coordination.

Methods Coordination

Iteration level Generation level

SICPO � —
SICPO-S � Synchronous
SICPO-A � Asynchronous

SICPO: spatially iterative coordination for parallel optimization.

Figure 5. A 4× 4 synthetic grid-shaped road network with 16
traffic signal intersections. Directional arrows indicate the flow
of traffic, where solid lines are high traffic flows, and dashed
lines are low traffic flows.
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The routes for scenarios are also shown in Figure 5.

There are two directions of traffic flows: vertically from

top to bottom and horizontally from left to right. The inter-

arrival time for the agents is 20 s on each traffic flow.

Initially, the green time ratios for intersections f0, 4, 8, 12g
are not optimized for the horizontal traffic flow from left

to right. Hence, the heaviest congestion occurs in front of

these intersections. The solid lines in Figure 5 indicate

large amounts of traffic flow (approximately three cars per

minute), and dashed lines indicate small amounts of traffic

flow (approximately one car per minute).

The grid network scenario is used to support the follow-

ing statements: (1) the iterative approach to optimization is

necessary to coordinate across regions to achieve a higher

quality global solution, (2) generation-level coordination

during the partial function optimization can improve the

convergence to a better objective value. Table 2 shows the

average wall-clock time, total CPU time, and convergence

of each method across iterations.

4.1.1. Iteration-level coordination. We examine the conver-

gence of SICPO across iterations in the Iterative Search

(see Figure 3). First in Iteration 0, a random solution is

generated initially. The initial solution is evaluated on the

whole grid network with the nonoptimal green time ratios

for intersections. At the same time, the simulation output

from the evaluation will be used in the optimization in the

next iteration. The objective value obtained is 22,430.

Next in Iteration 1, the parallel search is performed on

the grid network. The trajectories from the simulation out-

put in Iteration 0 will be used to construct the subtrips

according to the region boundaries. Partial function opti-

mization is applied to each of the regions. The optimized

green time ratios from each region are combined to obtain

the overall solution. The new solution is evaluated on the

whole grid network to determine the quality of the solu-

tion. This is repeated for Iteration 2.

Since the traffic flows change after each iteration of

optimization, additional iteration is required to synchronize

the trips across the regions. After optimization, the green

time ratios at intersections f0, 4, 8, 12g improve, resulting

in higher horizontal traffic flow. After Iteration 1 of

SICPO, the objective value decreases to 941. The quality

of the solution is limited by the low traffic flow sampled in

Iteration 0. The green time ratios from Iteration 1 are eval-

uated on the whole scenario and generate the subtrips for

Iteration 2. After Iteration 2, the objective value further

reduces to 72.

The results show that a single iteration of the optimiza-

tion is only able to optimize for trips sampled from the pre-

vious iteration. By iteratively optimizing using the trips

sampled from the previous iteration, the solutions are able

to converge to higher quality ones.

4.1.2. Generation-level coordination. Generation-level coor-

dination is used in SICPO-A and SICPO-S, where they

show to have better objective values compared with

SICPO. After Iteration 1 of optimization, SICPO-A and

SICPO-S have better objective values of 576 and 376,

respectively. After Iteration 2, both SICPO-A and SICPO-

S converged to an objective value of 69. However, the

additional coordination at the generation level does intro-

duce an overhead due to the synchronization to update the

neighboring regions regarding the improved trip timings

crossing the partition boundary. In Iteration 1, SICPO-S

has a slightly higher wall-clock time and CPU time com-

pared with SICPO-A.

To examine the impact of generation-level coordina-

tion, the number of trips with departure time updated at

every generation is shown in Figure 6. If the trip from the

neighboring region has improved arrival time, this

improved time is updated across the regions to generate

new departure time.

Figure 6(a) shows the number of trips synchronized in

Iteration 1 of SICPO-S. Region 2 shows the highest num-

ber of trips synchronized as the traffic flows are incoming

from regions 1 and 4. Region 3 does not have any trip syn-

chronized as there are no incoming traffic flows. Region 4

shows to have more trips synchronized than region 1. As

the optimization progresses, the improvement of the green

time ratios at intersections f0, 4, 8, 12g improves the hori-

zontal traffic flows. Hence, more agents cross the bound-

ary from region 3 to region 4, thereby increasing the

number of coordination. Iteration 2 of SICPO-S is shown

Table 2. Scenario shows average wall-clock time, CPU time, and convergence of different methods across iterations.

Method Iter. Wall-clock
time [s]

CPU time [s] Best objective value

SICPO 1 200 6800 941 ± 342
2 214 6886 72 ± 1

SICPO-A 1 238 6872 576 ± 302
2 236 6920 69 ± 2

SICPO-S 1 246 7058 376 ± 240
2 233 7451 69 ± 2

SICPO: spatially iterative coordination for parallel optimization.
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in Figure 6(b). Region 2 has an increased number of trips

synchronized due to more trips being sampled after the

improvement in the green time ratios after optimization in

Iteration 1.

In Iteration 1, SICPO-A has a lower quality solution

(576) compared with SICPO-S (376). Initially, regions 2

and 4 have lower traffic flows (as shown in Figure 5). The

evaluation of partial solutions for regions 2 and 4 has a

shorter wall-clock time due to low traffic flows. Therefore,

the partial function optimization for regions 2 and 4

progresses with a few generations before they coordinate

with regions 1 and 3, and the number of trip synchroniza-

tions initially is low. After a few generations of optimiza-

tion in regions 1 and 3, the improved travel time is

reflected in the increase in the number of trips synchro-

nized in regions 2 and 4. This explains the peak of the

number of trip synchronizations for regions 2 and 4 as

observed in Figure 6(c) and (d).

These results show that generation-level coordination

can improve the convergence of the optimization, where

SICPO-A and SICPO-S generate better objective values

compared with SICPO as shown in Table 2. The improve-

ments are due to the additional synchronization of trip tim-

ings between the regions, as shown in Figure 6. SICPO-A

achieves a solution with similar quality as SICPO-S but

using slightly lesser resources (i.e., CPU time). The over-

heads of the synchronization are reflected by the increased

wall-clock time and CPU time.

4.2. City-scale network

After the experiments on the grid network, we evaluate

SICPO on a city-scale road network to demonstrate con-

vergence and optimization time on a large-scale problem.

The road network and origin-destination matrix used in the

city-scale scenario is based on real-world data. We rely on

(a) (b)

(c) (d)

Figure 6. Number of trips with departure time updated across generations: (a) SICPO-S—Iteration 1, (b) SICPO-S—Iteration 2,
(c) SICPO-A—Iteration 1, and (d) SICPO-A—Iteration 2.
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a representation of the road network of Singapore city from

Viswanathan et al.,25 which comprised of 152,032 nodes

and 224,312 edges. The road network also contains a total

of 6557 signal phases of 1115 traffic signal-controlled

intersections. Singapore’s Land Transport Authority29 con-

ducts a travel diary survey, Household Interview Transport

Survey (HITS), once every 4 years. Origin-destination

pairs are derived from the results of the 2008 HITS data

set. We simulate 1 day’s afternoon and evening traffic of

6 h from 3 p.m. to 9 p.m. In our scenario, the maximum

number of agents during the peak traffic hours of the day

is approximately 50,000.

The experiment is executed on the ASPIRE-1 cluster of

the National Supercomputing Centre (NSCC), Singapore,

which comprises 1288 nodes, each equipped with two 12-

core E5-2690 v3 CPUs running at 2.6 GHz and 96 GB of

RAM. The algorithm parameters used in SICPO are shown

in Table 3, based on suggested values from Hassanat

et al.30 For a lower population size, a higher mutation rate

is used to increase the random search. The crossover rate

is defined to be higher than the mutation rate. The maxi-

mum number of regions, NR, is currently limited by the

scheduler constraint on the number of concurrent jobs.

Figure 7 shows the city-scale road network partitioned into

regions (different colored edges) with the traffic signal

intersections (as black nodes).

Each generation of the partial optimization is allocated

on two compute nodes (four CPUs with 48 cores in total),

where a total of 48 evaluations can be executed concur-

rently. Each partial solution is evaluated by traffic simula-

tor using only a single thread. For maximum parallelism

Table 3. Algorithm parameters.

Parameter Symbol Value

Iteration threshold �I 3%
Maximum number of regions NR 128
Population size NP 100
Hall of fame size NH 10
Tournament size NT 3
Crossover probability ρc 30%
Mutation probability ρm 10%
Maximum generation NG 50

Figure 7. Road network regions with traffic signal intersections (nodes in black). The network is partitioned into different regions
across iterations due to the changes in the traffic flows: (a) Iteration 1, (b) Iteration 2, and (c) Iteration 3.
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for 128 regions, a total of 256 compute nodes will be used.

The execution time of the parallel search is limited by the

slowest partial function optimization. To evaluate the glo-

bal solution, the parallel traffic simulator is used, which

utilize all the cores in the same compute node, i.e., 24

cores.

4.2.1. Optimization convergence. The convergence of

SICPO is examined by evaluating the relative improve-

ment in the partial results with each new solution found by

the parallel search. First, the relative improvement of the

solutions in each region is evaluated to analyze the con-

vergence of optimization with respect to the partial objec-

tive functions. Based on the new solution found in each

iteration, the relative improvement of the whole scenario

is evaluated.

The overall improvement of the global solution for

Iteration i compared with the initial solution X 0 can be

computed as:

DY i =
f (X 0)

f (X i)

We also calculate the relative improvement of the glo-

bal solution and partial solution in the region j between

Iteration i� 1 and Iteration i as follows:

DY i =
f (X i�1)

f (X i)
DY i

j =
fj(X

i�1
j )

fj(X
i
j )

In Iteration 0, an initial solution is generated and used

for all methods. A total of three iterations of SICPO,

SICPO-S, and SICPO-A are executed before reaching the

termination criterion where the objective improvement

across iterations is less than the iteration threshold (YI ) of

3%. The partitions in each iteration are shown in Figure 7,

where the regions change due to the re-partitioning in each

iteration. The results shown are obtained from a single

optimization run.

The summary of the results over the iterations is shown

in Table 4, together with the wall-clock time for the opti-

mization and evaluation. Optimization wall-clock time is

the wall-clock time spent in executing the parallel search

in an iteration; global evaluation time is the wall-clock

time in simulation atffi in Figure 3.

For each iteration, the relative improvements of the par-

tial function optimization are shown in Figure 8. Global

convergence can be observed by the decrease in relative

improvements across iterations. A large change in local

improvements, i.e., there are many regions with an

increase in improvements or a decrease in improvements,

indicates that partial function optimizations only con-

verged locally but combined partial solutions lead to a

worse global solution. Hence, trips between the regions

need to be synchronized to coordinate among the partial

solutions.

4.2.1.1. Iteration 1. The whole road network is

partitioned into 117 regions using METIS, as shown in

Figure 7(a). Comparing the improvements of each region,

all methods exhibit improvements for many regions, as

shown in Figure 8(a), (d), and (g) where the improvements

are greater than 1.

However, SICPO-A and SICPO-S have lower average

relative improvements (3:653 and 3:663 ) compared

with SICPO (4:063 ). As SICPO-A and SICPO-S intro-

duce additional coordination, the optimization of each sub-

problem also considers the traffic flows from the

neighboring regions. On the contrary, the partial solutions

in SICPO tend to converge locally as it does not consider

the traffic flows from the neighboring regions.

As shown in Table 4, Iteration 1 shows high relative

improvements compared with the initial solution. SICPO-S

shows the best overall improvement (1:583 ), followed by

SICPO-A (1:543 ) and SICPO (1:53 ). SICPO-S ensures

Table 4. Overall improvements of different methods across iterations.

Method Iteration Optimization wall-clock
time [s]

Global evaluation
time [s]

Av. travel
time [s]

Overall
improvement

Relative
improvement

0 — 480 2188 —
SICPO 1 984 385 1450 1.50 1.50

2 1395 407 1413 1.54 1.03
3 1320 359 1411 1.55 1.00

SICPO-A 1 2970 391 1416 1.54 1.54
2 3875 356 1371 1.60 1.03
3 2606 378 1332 1.64 1.02

SICPO-S 1 2852 397 1382 1.58 1.58
2 3511 388 1293 1.69 1.06
3 3195 347 1289 1.70 1.00

SICPO: spatially iterative coordination for parallel optimization.
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that all trips are synchronized across regions in each gener-

ation, whereas SICPO-A only synchronizes some trips.

This shows that better global convergence can be obtained

by more frequent synchronization of the subtrips for each

region.

4.2.1.2. Iteration 2. The whole scenario is decomposed

spatially into 128 regions, as shown in Figure 7(b). As the

traffic flows across the road network changes, it affects the

partitioning, resulting in different regions compared with

Iteration 1.

Compared with the previous iteration, the improvement

per region decreases substantially, indicating that the solu-

tions are approaching the global convergence. The average

relative improvements are significantly lower compared

with Iteration 1. Figure 8(b), (e), and (h) show fewer

regions with improvements while some regions show

regressions (if the improvement is less than 1). SICPO has

more regions with regressions (46 regions) compared with

SICPO-A (36 regions) and SICPO-S (41 regions). This

indicates that generation-level coordination reduces discre-

pancies of locally optimal partial solutions by more fre-

quent synchronization of the subtrips for each region.

Table 4 shows overall improvement over the previous

iteration, which also indicates that executing only a single

iteration is insufficient to achieve convergence of the over-

all optimization process. In this iteration, SICPO-S still

shows the best overall improvement (1:693 ), followed

by SICPO-A (1:63 ) and SICPO (1:543 ).

4.2.1.3. Iteration 3. In Iteration 3, the whole scenario is

again decomposed into 128 regions, as shown in Figure

7(c). Figure 8(c), (f), and (i) shows more regions with no

significant improvement or regression compared with

Iteration 2, indicating global convergence. As shown in

Table 4, the relative improvements for Iteration 3 are small

compared with the previous iterations. Since the overall

relative improvements are less than the threshold (YI ) of

3%, the iterative search stops for all methods, with the

overall improvement of SICPO-S at 1:703 , followed by

SICPO-A (1:643 ) and SICPO (1:553 ).

4.2.1.4. Global convergence. This large-scale scenario

shows that an iterative approach for coordination can con-

verge to higher quality solutions. As shown in Figure 8,

the improvements over the iterations for the regions reduce

as more partial solutions converge and do not improve fur-

ther. Hence, the relative improvements of the global solu-

tion over the iterations also reduce.

Although SICPO can achieve global convergence, there

can be large variations in the local convergence across

iterations. To resolve this issue, generation-level coordina-

tion can reduce the discrepancies of locally optimal partial

solutions by synchronizing the trips during partial function

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 8. Improvement of solution Xi�1
j compared with solution Xi

j across the regions. (a)–(c) shows the improvements for SICPO,
(d)–(f) for SICPO-A, and (g)–(i) for SICPO-S. The average relative improvements across regions are also shown in the subcaption.
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optimization, leading to better objective values compared

with only iteration-level coordination.

The global evaluation times of the methods are similar,

while there is a difference in the optimization wall-clock

time due to the generation-level coordination. SICPO-A

and SICPO-S show significantly higher optimization time

compared with SICPO, showing the trade-off between the

overhead of synchronization and computing resource usage

for convergence. SICPO-S introduces more overhead in

synchronization but may reach a converged global solution

faster. On the contrary, SICPO-A introduces less synchro-

nization overhead but may require more time to reach con-

vergence. We conclude that the key to generation-level

coordination is to balance this trade-off.

4.2.2. Comparison with global optimization. For comparison,

we conducted a global optimization (GO) using GA on the

whole road network. GO utilizes generation-level paralle-

lism to evaluate individual solutions concurrently, using

the GA parameters from Table 3. Each evaluation of the

individual solution is executed by the traffic simulator

using a single thread. The convergence of different meth-

ods across total wall-clock time and total CPU time is

shown in Figure 9(a) and (b), respectively. GO terminates

after 50 generations (; 3 days 15 h) once no significant

improvement is observed across three generations. The

results show that due to the large parameter space, the con-

vergence of GO is slow. Figure 9(a) shows when SICPO

completes the optimization, GO still executing the first

generation of optimization.

4.2.3. Limited budget. Since generation-level coordination

has a huge impact on the optimization time, we consider

the implications of having a limited budget and determine

which methods return a better quality solution. Both the

relative wall-clock time and CPU time compared with

SICPO are tabulated in Table 5. Total wall-clock time

measures the difference between the start and end time of

the whole iterative search, which is the sum of the optimi-

zation wall-clock time and global evaluation time across

iterations in Table 4. Total CPU time measures the sum of

the wall-clock time spent on the optimization across all

cores. These timings are normalized according to the

respective time obtained by SICPO. The last column of

Table 5 lists the relative objective value compared with

SICPO obtained by the different methods. Furthermore,

we compare the results generated by SICPO to hand-tuned

green time ratios that were determined iteratively based on

a lengthy visual inspection of the traffic simulation.

Comparing to SICPO, SICPO-S exhibits the best perfor-

mance, followed by SICPO-A. SICPO, SICPO-A, and

SICPO-S achieve better results compared with the hand-

tuned values, which has normalized objective value . 1.

(a) (b)

Figure 9. Comparison of convergence of SICPO against GO. Dashed line indicates the time when SICPO terminates: (a) total wall-
clock time and (b) total CPU time.

Table 5. Relative wall-clock time, CPU time, and objective
value compared with SICPO.

Relative compared with SICPO

Wall-clock time CPU time Objective value

GO 62.8 97.6 1.22
Hand-tuned — — 1.19
SICPO-A 2.20 1.06 0.93
SICPO-S 2.19 1.08 0.91

SICPO: spatially iterative coordination for parallel optimization; GO:

Global Optimization.
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The multiple levels of parallelism enable SICPO to

achieve a high level of concurrency to reduce the overall

wall-clock time. Due to the additional generation-level

coordination, SICPO-A and SICPO-S have higher total

wall-clock time compared with SICPO. This is a trade-off

to achieve a slightly better global convergence.

Given a limited time budget where SICPO terminates

(shown as the dashed line in Figure 9(a)), SICPO-A and

SICPO-S manage to converge to better objective values

(0:993 and 0:963 compared with SICPO). The GO

approach is still evaluating the first generation, which has

the worst objective value. Comparing to a limited CPU

budget when SICPO terminates (shown as the dashed line

in Figure 9(b)), SICPO-A and SICPO-S converge to better

objective values (0:953 and 0:913 compared with

SICPO). At the same time, the GO method is evaluating

the 11th generation, which has the worst objective value

(1:293 compared with SICPO).

In summary, generation-level coordination enables con-

vergence to a higher quality global solution compared with

both GO and SICPO given the same CPU time or total

wall-clock time. The usage of SICPO-A or SICPO-S

depends on the constraints on the computing budget,

which is discussed in the next section.

5. Discussion

In this paper, we introduced new coordination mechanism

for parallel optimization of traffic signal control. On the

small-scale case study of a grid network, convergence to a

higher quality global solution can be observed using an

iterative approach in SICPO. Similar convergence is also

observed on the city-scale network. By coordinating the

traffic flows between iterations, it enables the improved

traffic flows to be used in the optimization for the next

iteration. As the grid scenario exhibits strong coupling

between the regions, additional coordination at the genera-

tion level helps in converging to a better global solution,

especially for synchronous coordination. For the city-scale

scenario, SICPO-A or SICPO-S can converge to better

objective values compared with SICPO given a limited

time or CPU budget. However, there are still some limita-

tions to our proposed approach.

5.1. Partitioning

The optimization time required by the methods is limited

by the partitioning approach. Since the regions are opti-

mized in parallel, the overall execution time in each itera-

tion is limited by the slowest region. Figure 10 shows

sorted per-region optimization times for Iteration 1 of

SICPO. Currently, the intersection flows and the number

of traffic signals are used as the vertex weights. This

attempts to balance the agent count and the number of

nodes in each region, which can affect both the

convergence and optimization time. However, METIS is

unable to return a well-balanced partition, resulting in a

skewed degree distribution in the optimization time as

shown in Figure 10. The results from Iterations 2 and 3

show similar skewed distribution. Better partitioning may

be achieved by assigning vertex weights to represent traf-

fic density. In a heavily congested region, there may be

many vehicles making little progress, but the simulator

will still invoke their car-following and lane-changing

models. A suitable measure of the traffic density in a

region can better represent the workload of the agents

within a region.

5.2. Workload scheduling

If there is a limit on the available parallel processors such

that we cannot achieve full parallelism for the partial func-

tion optimizations, there needs to be an execution mechan-

ism to efficiently schedule the tasks (i.e., partial function

optimization). A simple master-worker paradigm can be

used to execute the tasks using a first-in-first-out (FIFO)

strategy. Using a master-work scheduler, SICPO can effi-

ciently execute the partial function optimizations even if

the workload between the regions is imbalanced. On the

contrary, SICPO-S requires a synchronization barrier at

every generation. There can be idle processors waiting at

the barrier for the slower regions to complete. Meanwhile,

SICPO-A allows regions with a lighter workload to com-

plete first, freeing up the processors for other workloads.

Hence, in terms of the overall computing budget, SICPO-

A requires a lower computing budget compared with

SICPO-S (see Table 5).

6. Related works

GA has been frequently used in the traffic signal optimiza-

tion. Rouphail et al.31 optimized the traffic signal of a traf-

fic network with nine intersections using a GA to reduce

Figure 10. Optimization wall-clock time for each region shows
a skewed degree distribution.
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the link delay and total network queue time. Sánchez-

Medina et al.32 optimized traffic signal using GA with cel-

lular automata-based microscopic simulator on a traffic

network of seven intersections. They attempted to optimize

several separate optimization objectives such as reducing

the travel time and gas emission.

The above approaches have demonstrated good perfor-

mance in small traffic networks. However, signal optimi-

zation of large-scale traffic networks is still very

challenging, and only a few related works were presented.

Garcı́a-Nieto et al.33 attempted to solve large-scale traffic

signal optimization problem using a modified Particle

Swarm Optimization (PSO) algorithm for traffic networks

involving up to 40 junctions. Gao et al.34 evaluated differ-

ent traffic optimization algorithms on a set of traffic net-

works involving 9 to 400 intersections to reduce the total

delay time of vehicles.

These approaches directly optimize the whole traffic

network with an optimization algorithm. As the number of

traffic signals increases, this also increases the solution

space of the problem, resulting in difficulty in finding satis-

fying results by tackling the entire traffic network directly.

We proposed a spatial decomposition of the traffic signal

problem so that parallel EA can be used to reduce the com-

putational complexity. Our method is demonstrated on a

road network of more than 1000 intersections, which is sig-

nificantly larger compared with other works.

6.1. Spatial optimization

Spatial decomposition has also been applied to traffic sig-

nal optimization problems. There are existing works that

divide the road network into regions containing an inter-

section and optimize signal timing parameters of each

intersection simultaneously.

Timotheou et al.35 modeled the problem as a mixed-

integer linear program (MILP) using the cell transmission

model (CTM). The problem is decomposed temporally into

temporal subproblems with a smaller time window and

then further decomposed spatially into spatial subproblems

for each intersection. First, the decomposed subproblems

are solved in a distributed fashion while exchanging traffic

flow information with neighboring intersections. Then, the

relaxed partial solutions are combined through distributed

rounding schemes, where noninteger decision variables are

rounded to Boolean variables for traffic signal control.

Mehrabipour and Hajbabaie36 also utilized a MILP and

CTM to optimize traffic signal timings, considering over-

saturated traffic conditions. After decomposition, each

intersection is optimized separately for every time step,

where capacity in the downstream intersections and arrival

from the upstream intersections are exchanged. A rolling

time horizon solution technique is used for optimizing the

traffic signal for a time step based on the exchanged traffic

flows from the previous time steps.

Other approaches decompose the road network into

regions containing multiple intersections. Adacher and

colleagues37,38 proposed to use a surrogate method based

on a platoon model for traffic signal optimization. The

road network is decomposed using clustering algorithms,

e.g., k-means or Newman clustering algorithm. The nodes

in the network are ranked according to their node degrees,

betweenness, and flows. Subnetworks are coordinated by

connecting to the highest-ranking nodes from the neigh-

boring subnetworks, such that the traffic flows from these

neighboring nodes are fed into the subnetworks. Then, the

subnetworks are optimized in order of their node ranks,

while using the partial solutions from subnetworks of

higher rank. Villagra et al.39 utilized cellular genetic algo-

rithms (cGAs) for optimizing traffic lights by structuring

the population in a two-dimensional toroidal grid, such

that individuals may only interact with their neighbors.

The exploration of the search space is smoother due to the

slow diffusion of solutions through the population.

Existing works have proposed decomposition

approaches to solve traffic signal optimization, such as

partitioning into individual intersections,35 clustering

approaches,37,38,40 or using cellular grids.39 However, the

synchronization between the partitions becomes the key

bottleneck for large road networks. Frequent communica-

tion, such as every time window of 10 min35 or every time

step,36 can substantially increase the synchronization over-

head in large road networks. Compared with existing

works, our proposed method reduces synchronization and

improves coordination among the partial solutions by only

synchronizing at each iteration and during partial

optimization.

Liang et al.40 proposed an iterative approach for coop-

erative signal optimization that is similar to our work. The

road network is decomposed into subnetworks and opti-

mized using a surrogate-assisted optimizer. The partial

solutions are coordinated by combining them and using

the complete solution in the next iteration. Their traffic

scenario utilizes predefined turning rates, which allows a

more accurate surrogate model. However, changing traffic

signals may affect the traffic pattern, limiting the accuracy

of the surrogate model. Our approach utilizes a global

simulation to evaluate the whole signal plan to handle the

changes in the traffic pattern.

6.2. Parallel evolutionary algorithm

An extensive review of parallel EAs is carried out by

Talbi,14 categorizing different levels of parallelism for

EAs based on their parallelism granularity. The granularity

reduces (i.e., levels of parallelism increase) from algorith-

mic level, generation level, to solution level. In

algorithmic-level parallelism, the optimization algorithm

composes of different metaheuristics that can be executed

in parallel. In generation-level parallelism, each generation

Tan et al. 15



of a metaheuristic is parallelized by evaluating individual

solutions in the population in parallel. In solution-level

parallelism, each solution is decomposed and evaluated in

parallel.

Based on the classification by Talbi, our method pro-

poses a decomposition at the problem level, which decom-

poses at both algorithm level and solution level. Then, we

introduce new coordination mechanisms for synchronizing

interactions among the subproblems, including synchro-

nous or asynchronous coordination among the subpro-

blems. At the iteration level, we also divide the population

and evaluate the subpopulations in parallel.

7. Conclusion

We proposed a parallel simulation-based optimization

approach called SICPO to solve large-scale traffic signal

optimization by introducing new coordination mechanisms

to improve convergence and reduce synchronization over-

heads. A traffic simulator is used to generate the interac-

tions for the spatial decomposition of the problem into

subproblems. This decomposition reduces the dimension-

ality of the problem and enables faster convergence in a

smaller number of generations. The optimization time is

greatly reduced by applying parallelism at two levels: (1)

each subproblem is optimized concurrently, and (2) each

solution in the subproblem is evaluated in parallel. The

coordination among the subproblems is achieved in two

ways: (1) coordinating at the end of the optimization pro-

cess in every iteration through simulating the whole sce-

nario, and (2) coordinating at generation level during the

partial function optimization by synchronizing the interac-

tions between the regions.

We demonstrated the applicability of our method on a

city-scale traffic signal optimization problem based on a

real-world road network of Singapore. Our performance

evaluation shows that in a given time or CPU budget,

SICPO converges faster than GO and is thus more applica-

ble to city-scale traffic networks. In addition, we showed

that generation-level coordination (i.e., SICPO-A and

SICPO-S) can improve convergence at the cost of higher

computational time. We found that asynchronous

generation-level coordination (SICPO-A) has a lower

computing budget compared with synchronous generation-

level coordination (SICPO-S) at the cost of slightly worse

convergence.

The simulation-based evaluation of the solutions is the

most time-consuming portion of the optimization process.

In future work, workload imbalance in the evaluations can

be addressed by using a better partitioning strategy to

return a more balanced partition in terms of the simulation

workload, or a better scheduling strategy to execute the

imbalanced tasks. Budget allocation can further reduce the

number of evaluations in the optimization process.41

Other than that, the proposed approach only generates a

static traffic signal timings targetting a specific time win-

dow. Temporal partitioning will be investigated to handle

the dynamic changes in the traffic flows throughout the

day.

The proposed method may be applied to other spatial

optimization problems, as long as the interactions between

the regions exhibit some degree of spatial locality. A

potential example is the urban network design problem,

which consists of optimizing the layout of an urban road

network by deciding the driving directions of existing

roads and the signal settings at intersections.42 However,

determining a suitable decomposition of the problem

remains a problem-dependent challenge.
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