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ABSTRACT Programs involving discontinuities introduced by control flow constructs such as conditional
branches pose challenges to mathematical optimization methods that assume a degree of smoothness in
the objective function’s response surface. Smooth interpretation (SI) is a form of abstract interpretation
that approximates the convolution of a program’s output with a Gaussian kernel, thus smoothing its output
in a principled manner. Here, we combine SI with automatic differentiation (AD) to efficiently compute
gradients of smoothed programs. In contrast to AD across a regular program execution, these gradients
also capture the effects of alternative control flow paths. The combination of SI with AD enables the
direct gradient-based parameter synthesis for branching programs, allowing for instance the calibration of
simulation models or their combination with neural network models in machine learning pipelines. We detail
the effects of the approximations made for tractability in SI and propose a novel Monte Carlo estimator that
avoids the underlying assumptions by estimating the smoothed programs’ gradients through a combination
of AD and sampling. Using DiscoGrad, our tool for automatically translating simple C++ programs to a
smooth differentiable form, we perform an extensive evaluation. We compare the combination of SI with
AD and our Monte Carlo estimator to existing gradient-free and stochastic methods on four non-trivial and
originally discontinuous problems ranging from classical simulation-based optimization to neural network-
driven control. While the optimization progress with the SI-based estimator depends on the complexity of
the program’s control flow, our Monte Carlo estimator is competitive in all problems, exhibiting the fastest
convergence by a substantial margin in our highest-dimensional problem.

INDEX TERMS Automatic differentiation, optimization, imperative programs, discontinuous control flow,
parameter synthesis, gradient estimation, probabilistic execution, Monte Carlo approximation.

I. INTRODUCTION
Parameter synthesis through optimization is a central task in
fields such as modeling and simulation, control theory, and
machine learning. The difficulty of the optimization tasks
increases with the number of parameters required to accu-
rately model increasingly complex systems. In the machine
learning field, the well-known backpropagation algorithm [1]
is commonly used for gradient-based training of deep neural
network models across enormous numbers of parameters.
Gradient-based methods promise fast convergence to a local
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optimum, but require the existence and calculation of the
optimization problem’s partial derivatives. Automatic differ-
entiation (AD) techniques [2], [3] automatically calculate and
propagate these derivatives through the arithmetic of arbitrary
computer programs.

However, while these pathwise derivatives agree with
the definition of the partial derivative, they do not provide
sufficient gradient information if the control flow of the
problem depends on the parameters. As a characteristic
example for branching control flow, consider the Heaviside
step function H (x)= 1x≥0, depicted in Fig. 1. This piecewise
function has derivative dH/dx= 0 everywhere, except at a
discontinuity at x= 0, where it is infinite, i.e., its derivative
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FIGURE 1. Graph of the Heaviside step function and its derivative
estimated pathwise (e.g., through automatic differentiation) by IPA, and
by a smoothing estimator.

is the Dirac-delta. Here, AD can correctly determine the
derivative at any x ̸= 0, but its value of zero prohibits the
use of gradient descent and does not provide any information
about the jump discontinuity. Evidently, this situation remains
even if the derivative is averaged across different sample
points in the parameter space (cf. Fig. 1, dotted line). More
generally, from the literature on infinitesimal perturbation
analysis (IPA) [4] it is known that for stochastic discontinuous
programs, simple averaging of the pathwise derivatives leads
to a biased gradient estimator. One solution is to calculate the
gradient of a smooth approximation of H (cf. Fig. 1, dashed
line).

The need for differentiating discontinuous functions
currently arises in many practical applications, such as
neurosymbolic programming [5], program synthesis [6],
agent-based simulation [7], and inverse rendering [8]. Thus,
the challenge of obtaining gradients over discontinuities has
been tackled from several angles: interpolation [7], stochastic
(Monte Carlo) estimation [9], and smoothing over discrete
randomness [10].

Here, we explore two novel approaches for provid-
ing smoothed gradients of imperative programs involving
branching control flow. Using our tool DiscoGrad, problems
involving parameter-dependent control flow formulated in
the C++ language (cf. Section IV-E for a brief description
of supported language constructs) can be automatically dif-
ferentiated to determine their smoothed gradients, enabling
the use of gradient-based methods for local optimization.
As observed in the training of neural networks with backprop-
agation, suitable gradient descent algorithms are capable of
finding high-quality solutions, even for non-convex functions
[11]. Accordingly, our methods assume neither smoothness
nor convexity and we evaluate the performance of our
proposed estimators on four high-dimensional, discontinuous
optimization problems. Our main contributions are:

1) We show how the existing technique of Smooth Inter-
pretation (SI) [12], a form of abstract interpretation,
can be combined with AD to obtain gradients across
discontinuities in Section IV-A.

2) We provide a clear description of the assumptionsmade
in SI’s probabilistic execution of a program and their
effects on the output’s fidelity in Section IV-B.

3) We propose a novel gradient estimator that avoids SI’s
assumptions by a combination of AD and Monte Carlo
sampling in Section IV-D.

4) We present DiscoGrad,1 our tool to automatically
translate C++ programs to an efficiently smoothed,
differentiable counterpart using our proposed smooth-
ing methods and other existing gradient estimators in
Section IV-E.

5) We provide an extensive evaluation of the estimator’s
execution times, gradient fidelity, and optimization
progress against existing sampling-based schemes for
local optimization such as REINFORCE [13] and non-
gradient based, global optimization methods (genetic
algorithm, simulated annealing) in Section V.

In the following sections, we introduce AD, the smoothing
of gradients, and SI (Section II) and review the related
literature (Section III). Section IV presents our main results.
Finally, we carry out an extensive evaluation (Section V),
concluding with final remarks and future directions
(Section VI).

II. BACKGROUND
In the following, we outline the established work on differen-
tiating programs, with a focus on programs involving branch-
ing control flow. Starting from automatic differentiation as
the base technique for differentiating programs, we introduce
stochastic smoothing as well as smooth interpretation.

A. AUTOMATIC DIFFERENTIATION
Automatic differentiation (AD) is a method to compute
partial derivatives of computer programs [2], [3]. Treating
a program P as a composition of mathematical functions
P = f1 ◦ f2 ◦ · · · ◦ fn, AD repeatedly applies the chain rule
(fi ◦ fi+1)′ = (f ′

i ◦ fi+1) · f ′

i+1 to calculate the program’s deriva-
tive P ′ from the inputs fn. The well-known backpropagation
algorithm [1] widely used in machine learning is a special
case of AD.

The literature distinguishes two approaches: Forward-
mode AD propagates derivative information throughout the
(forward) executions of the program by augmenting the
involved variables v with a so-called tangent value v̇. After
each invocation of a mathematical function, this value is
updated according to the function’s derivative and the chain
rule. Thus, at any given point in the execution, the tangent
value can be interpreted as the partial derivative ∂fj(x)/∂xi of
the operations up to the current point j wrt. the component xi
of the input vector x.

In contrast, reverse-mode AD records the arithmetic
operations and values involved in the program’s forward
execution in a so-called tape and computes the partial
derivatives in a subsequent step by traversing the tape
in reverse. While forward-mode AD calculates the partial
derivatives of a single input variable wrt. all output variables
throughout a single program execution, reverse-mode AD
calculates the derivatives of all inputs wrt. a single output
based on a single traversal of the tape following the program’s
termination. The pathwise gradients computed by AD are

1Available at https://doi.org/10.5281/zenodo.10288017
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exact to machine precision. This is in contrast to finite
differences methods, whose fidelity depends on finding an
appropriate step size.

Many programs encountered in optimization problems
involve input-dependent control flow, which typically intro-
duces jump discontinuities. Unfortunately, as AD’s purely
arithmetic view of a single forward execution of a program
cannot account for alternative control flow paths, it produces
gradients of limited utility for optimization for such programs
(cf. Fig. 1). For stochastic programs, averaging across path-
wise derivatives, known as infinitesimal perturbation analysis
(IPA), produces an unbiased estimator only if the program
permits the exchange of expectation and differentiation [14]:

∇E[P(x)] = E[∇P(x)]

Programs involving input-dependent discontinuities typically
violate this condition. For deterministic programs, this form
of smoothing can also be used by perturbing the input vector
x with random noise. Sampling-based estimators applicable
to the discontinuous case are discussed in Sections III-A
and V-B. As described next, the expected value can alterna-
tively be obtained by a symbolic probabilistic execution.

B. SMOOTH INTERPRETATION
Smooth interpretation (SI) [12] is a method to smooth the
output of programs involving discontinuities, making them
more amenable to numerical optimization using black-box
approaches such as Nelder andMead’s method [15]. Building
on abstract interpretation [16], [17] and probabilistic program
semantics [18], SI executes a program P according to a
smoothed semantics that approximates the convolution of the
program output with a Gaussian kernel fx,6 :

P̃(x) :=

∫
y∈Rn

P(y)fx,6(y)dy. (1)

Here, x is the program’s n-dimensional input vector and
6 a diagonal covariance matrix determining the amount of
smoothing.

In SI, each originally scalar input variable xi ∈ x is
substituted by a Gaussian random variable Xi with mean
µx i = xi and a configurable standard deviation σx i sometimes
referred to as the smoothing factor. Now, the arithmetic
operations specified in the program operate on and generate
random variables. As an approximation, the distribution of
any operation’s output is in practice again represented by a
Gaussian characterized by its mean and standard deviation.
Thus, the output variables of a smooth interpretation are,
just like the inputs, Gaussian random variables. The result
of the interpretation, i.e., of the approximate convolution of
the Gaussian with the program at the current input, are the
expectations of the output variables.

A key aspect of SI is the handling of conditional branches,
as encountered in the form of if-else statements. The
smoothed semantics require both possible paths to be
executed and weighted according to the distribution of the
variables involved in the branching condition. This leads to

two possible distributions for some of the variables. Hence,
each variable is represented as a mixture distribution, each
element of which represents a Gaussian approximation of the
distribution resulting from one of the program’s (sequences
of) branches. To limit the number of elements of each mixture
distribution, a ‘‘Restrict’’ algorithm combines the results of
branches in a way that minimizes the deviation from the
original overall mixture distributions of the variables.

In general, the exact convolution of a program with a
Gaussian is intractable. The approximations made by SI, e.g.,
assuming the program state to be a Gaussian mixture and
limiting it to a finite size through Restrict, enable a practical
application of the method and will be further explored in
Section IV-B.

III. RELATED WORK
Rooted in the field of non-smooth optimization [19], the
(gradient-based) optimization of discontinuous programs
has recently seen major interest across many domains, for
example, machine learning [20], computer graphics [8] and
optimal control [9]. Besides gradient-free approaches such
as genetic algorithms or the Nelder-Mead method [15],
the state of the art in non-smooth optimization includes
bundle methods, which augment the subgradient method
through the exploitation of past subgradient information
[21] and gradient sampling methods exploiting piecewise
differentiability [22]. In contrast, we consider smoothed
gradients of problems that, while piecewise differentiable,
typically provide only zero-vector gradients (cf. Fig. 1). For
these, pathwise estimates based on pathwise gradients, as in
IPA [4], are insufficient.
In the following, we discuss existing work on differenti-

ating across branching control flow directly related to ours.
Broader overviews of gradient estimation techniques are
given in [23] and [24].

A. SAMPLING-BASED GRADIENT ESTIMATION
Based on the conditional Monte Carlo method for variance
reduction, smoothed perturbation analysis (SPA) obtains
an unbiased gradient estimate through conditional expecta-
tions [14]. By choosing suitable problem variables (called
characterization) to condition on, the calculation of the
expected value is effectively separated into continuous
parts, allowing for the interchange of the expectation and
differentiation operations (cf. the end of II-A).While SPA has
been widely applied to differentiate discontinuous problems
such as certain discrete-event simulations, its applicability
is limited by the need to manually determine a suitable
characterization to condition on for the problem at hand. For
an overview of the many variations of (S)PA refer to [23]
(Section C) and the references therein.
The REINFORCE estimator, commonly employed in

reinforcement learning, exploits the differentiation rule of
the logarithm to eliminate the need for calculating gradients
of the program [13]. The gradient is calculated from the
plain program output, multiplied by the log-derivatives of
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the program-specific probability density (cf. Section V-B).
REINFORCE is thus also referred to as the log-derivative
trick, likelihood ratio estimator or score function esti-
mator. Similar to the characterization conditioned on in
SPA, the probability density and its log-derivative are
problem-specific.

Some problem-independent (black-box) estimators are
given in [25], therein referred to as gradient-free oracles. The
authors analyze the convergence of a scheme introduced in
Chapter 3.4 of [26], which estimates the descent direction
through directional derivatives, calculated by a randomized
version of finite differences where each input dimension
is perturbed simultaneously. We will make use of the
first of these gradient-free oracles for comparison in the
evaluation, where it is also briefly introduced in Section V-B.
Due to the lack of a commonly used name for this
estimator, we abbreviate it as PGO (Polyak’s Gradient-Free
Oracle). A similar construction using non-directional finite
differences is proposed in [9].

We note that sampling-based schemes for stochastic
programs, like SPA and REINFORCE, can also be applied to
the case of deterministic objective functions by introducing
artificial perturbations to the program inputs. If these
perturbations are sampled from a normal distribution, their
estimates approach the gradient of the convolution integral
from Eq. (1) as the number of samples approaches infinity.

B. COMBINATION OF SAMPLING AND AD
Some recent works propose combinations of sampling-based
methods with AD rather than finite differences.

In [10], an unbiased SPA estimator was derived for
programs involving discrete randomness and integrated with
the AD process in the Julia package StochasticAD.
This allows for the automatic smooth differentiation of
programs that sample from discrete probability distributions
with parameters depending on the program inputs. In contrast
to our work, this approach does not consider input-dependent
discrete control flow.

A recent use of forward-mode AD is found in the
‘‘forward gradient’’, which is determined by sampling over
directional derivatives [27]. While their work does not
consider differentiation across discontinuities, our methods
share the use of forward-mode AD for problems where the
reverse-mode would be the conventional choice. As we will
see in Section V-C, forward-mode AD incurs only a tolerable
overhead in our benchmark problems, while allowing us
to efficiently obtain intermediate partial derivatives and
avoiding reverse-mode AD’s linear dependence of the
memory consumption on the program length.

Finally, a sampling-based method proposed in a recent
preprint [28] achieves differentiability by applying a static
degree of smoothing at each branch and systemically visiting
all control flow paths whose probability is within machine
precision. Their approach shares with SI the challenge of
scaling to problems with non-trivial numbers of branches
without introducing biases, the effects of which on SI’s

fidelity are detailed in Section IV-B and quantified in
Section V.

C. DIFFERENTIABLE PROGRAMMING LANGUAGES AND
NEUROSYMBOLIC PROGRAMMING
Differentiable programming languages offer semantics that
allow for a sound calculation of gradients across entire, typ-
ically functional, programs. Abadi presented operational and
denotational semantics for a functional language that includes
a construct for reverse-mode AD [29]. Discontinuities are
ruled out by assuming that constructs such as conditional
branches are substituted by smooth approximations by the
user.

Some recent languages treat discontinuities natively.
Sherman et al. presented semantics for a functional language
that covers non-differentiable functions, but requires con-
tinuity [30]. The functional language ADEV [31], which
targets differentiable probabilistic programming, allows dis-
continuities to only depend on the program’s stochasticity,
not on the parameters. This is the same condition that
is satisfied after applying the reparametrization trick [32].
Amore general approach for handling discontinuities is taken
in the functional language byAmorim et al. [33], which relies
on distribution theory to soundly express the contribution
of discontinuities to the gradient. The resulting integrals
are approximated by Monte Carlo sampling. In contrast to
these works focused on language semantics, we propose and
study concrete gradient estimators that approximate gradients
of smoothed imperative programs, specifically targeting the
case where discontinuities depend on the parameters.

Among the use cases of differentiable programming lan-
guages is the gradient-based synthesis of symbolic programs,
which offers an alternative to traditional combinatorial
program search. The search over symbolic programs is
achieved by interpreters that employ continuous relaxations
to enable the computation of gradients of the program’s
output wrt. its parameters, which may represent numerical
constants, instructions, or the registers to operate on [6],
[34], [35], [36]. Neurosymbolic programming [5], [37]
extends this idea towards programs combining symbolic and
neural building blocks. In a recent work, a generalization
of the REINFORCE estimator was used to differentiate
across symbolic program executions in order to determine
parameters leading to control flow paths that adhere to a
safety criterion [38]. Although the focus of our present
work is on the parameter synthesis for existing programs,
the proposed gradient estimators may benefit synthesis
approaches as well.

D. DOMAIN-SPECIFIC APPROACHES
Methods for gradient smoothing are proposed and applied
in many contexts, motivated by a myriad of goals. Here,
we discuss relevant publications from the popular fields of
neurosymbolic programming, program synthesis, differen-
tiable rendering, and simulation-based optimization.
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Some recent work achieves smoothing by weighted aver-
aging of variable values across branches as a basis for com-
bining neural networks with traditional algorithms [39], [40],
for parameter estimation across agent-based simulations [7],
and for antialiasing [41]. In contrast to SI and unbiased black-
box estimators, these works lack a well-defined probabilistic
semantics and thus do not offer a clear interpretation of the
smoothed output.

An alternative approach common in simulation-based
optimization is to sample a model’s input-output relation to
generate a surrogate model [42]. Depending on the type of
surrogate, e.g., a neural network, the resulting model may
be smooth and differentiable. A similar approach has been
taken in systems security for gradient-based fuzzing [43].
Surrogate models are typically fitted to input-output samples
in a black-box fashion, after which gradient estimates are
made without involvement of the original model. In contrast,
the gradient estimators proposed in our work operate on the
original program, making use of its internal structure.

Finally, the field of computer graphics has also shown
broad interest in the differentiation of discontinuous pro-
grams. Differentiable rendering [8] aims at determining
partial derivatives of pixel values with respect to scene
parameters, enabling applications such as inverse rendering,
i.e., determining scene parameters that best fit real-world
image data. Modern rendering techniques are typically based
on Monte Carlo sampling of light rays through three-
dimensional scenes. The integrals approximated in this
manner may carry discontinuities related to the visibility
of objects in the scene. This problem can be solved either
by explicitly sampling edges that cause the discontinu-
ities [44], or more scalably by applying problem-specific
reparametrizations to the objective function so that the
position of discontinuities becomes independent of the
parameters [45]. An overview of Monte Carlo techniques for
differentiable rendering is given by Zeltner et al. [46].

In contrast to the above works, the gradient estimators
proposed and evaluated in the remainder of our article
target generic imperative programs without reliance on
domain-specific problem properties.

IV. SMOOTH AUTOMATIC DIFFERENTIATION
Many optimization problems are naturally formulated as
imperative programs. However, the existing work on smooth
differentiation lacks a method that 1. focuses on imperative
programs involving conditional branching on the input values
and 2. makes use of exact pathwise derivatives as determined
via AD. In this central section, we will show two possible
candidates. First, we provide a framework for the problem
of calculating the smoothed gradient of discontinuous
programs where the conditional control flow depends on
the input vector. By mapping SI to this framework, its
integration with AD becomes straight forward, providing
our first (deterministic) estimator. However, this approach
is encumbered by the strong assumptions of SI. We explore
ways to relax these through information gained by AD, but

find that the benefits of these improvements are dwarfed by
the effect of SI’s restricted representation of the probabilistic
program states. Thus, our second (sampling-based) candidate
is an AD-powered Monte Carlo approach operating under
much lighter assumptions, often yielding significantly more
accurate gradient estimates.

A. APPROACH
In our derivations, we consider optimization problems
expressed as imperative programs P: Rn

→ R mapping n
input variables to a single output value. Thus, P is typically
a piecewise function. We further assume that discontinuities
only arise through branch and loop conditions, noting that
common discontinuous functions such as the absolute value
function can be rewritten using conditional branching.

As shown in [12], the smoothing of P with a (multivariate)
Gaussian kernel fx,6 can be expressed in terms of a
convolution

P̃(x) :=

∫
y∈Rn

P(y)fx,6(y)dy = EX∼N (x,6)[P(X )] , (2)

where x is the program’s n-dimensional input vector and
6 a diagonal covariance matrix determining the amount
of smoothing. This form of smoothing is sometimes also
called the (generalized) Weierstrass transform. By the law
of the unconscious statistician, the convolution Eq. (2) can
be regarded as taking the expected value of the program’s
output distribution when executed on normally distributed
random variables X ∼N (x, 6), see also [23], Section IV. It is
important to note that in our case randomness is introduced by
moving from x to X , i.e., our derivations are also applicable
to deterministic programs.

A possible strategy to automatically calculate the smoothed
gradient ∇̃P(x) := ∇ P̃(x)= ∇xE[P(X )] is to exchange the
expectation and gradient operators, as is done in IPA. While
this enables a close and automatic approximation, e.g.,
through a Monte Carlo approach and AD, the equality
∇xE[P(X )] = E[∇xP(X )] only holds if P is continuous
(precise conditions are given in [47]).
In the case of imperative programs with control flow

depending on x, P is not generally continuous, requiring
an alternative approach. We observe that the control flow
partitions the program’s (discontinuous) output P(x) into
several continuous parts. In the probabilistic execution
context, we can isolate these continuous parts by conditioning
the distribution ofP(X ) on the execution path p∈ {1, . . . ,N }.
More precisely, let the random variable P reflect which
control flow path p was taken in the execution of P . Then,
using the law of total expectation, we can decompose the
integral Eq. (2) into a sum over expectations of its path-
specific outputs:

P̃(x) = EX∼N (x,6)[P(X )]
= EP

[
EX [P(X )|P]

]
=

N∑
p=1

P(P = p)EX [P(X )|P = p] . (3)
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In practice, P is defined in terms of the conjunction of
branching conditions on X encountered along each control
flow path p. We note that the idea of using conditional
expectations to obtain a smooth objective is very similar
to SPA (cf. the overview in [24]). Here, however, the
conditioning does not justify the application of IPA, but rather
provides a descriptive transformation. Considering Eq. (3),
the smoothed gradient of the program is given by:

∇̃xP(X ) = ∇xEP

[
EX∼N (x,6)[P(X )|P]

]
= ∇x

N∑
p=1

P(P = p)EX [P(X )|P = p]

=

N∑
p=1

(
∇xP(P = p)

)
EX [P(X )|P = p]+

N∑
p=1

P(P = p)
(
∇xEX [P(X )|P = p]

)
. (4)

Taking into account the sum and chain rules of differentiation,
this requires determining the gradients of P(P = p) and
E[P(X )|P = p] wrt. x. In the general case, where the former
does not depend on x, it is always 0 and can be omitted.
However, in our case the probability of taking a branch is
influenced by the branching condition, which depends on x,
yielding a non-zero gradient vector. The second problemwith
estimating Eq. (4) is the number of possible paths N , which
grows exponentially with the number of branches, leading to
an exponential explosion of summation terms.

SI handles both problems by assuming that P(X ) follows
a Gaussian mixture distribution of maximum size M ≪

N . The smoothed execution then involves propagating the
first two moments x and 6 of X and descendant variables
through the program. Fig. 2 (left and center) showcases this
on a simple example program. At branches, the mixture then
naturally arises (for each variable) from the two new possible
distributions of the then and else cases. The weights of the
two new mixture elements are calculated by evaluating the
cumulative normal density parametrized with the two known
moments of the input distribution. To ensure that at most M
control paths are carried along, selected mixture elements
are merged (cf. Section IV-C). Thus, both the calculations
leading toP(P = p) andE[P(X )|P = p], which coincidewith
the weight and mean of the mixture element corresponding
to p, are smooth functions of the program input. We make
use of this property by differentiating SI’s approximations
of the per-path weight and output via AD. The right-hand
side of Figure 2 shows the differentiation by the example of
forward-mode AD, which tracks the derivatives wrt. the first
moments µX of X . We now briefly consider some interesting
opportunities opened up by this integration of AD.

B. RELAXING SI’S ASSUMPTIONS
The method of SI [12] imposes several major assumptions
upon programs, trading off fidelity for execution speed:

1) No interdependencies: The inputs to any operation are
assumed to be independent normal distributions.

2) Everything is Gaussian: The output of any operation is
assumed to follow a normal distribution, which is not
true in the general case, even assuming 1). As a con-
sequence, within a particular branch, the distribution
of a variable Xi (and its dependent variables) contains
values excluded by the branching condition Xi ≤ c.

3) No truncation at branches: When splitting the state at
a branching point, the resulting two distributions are
approximated by scaling the weight of the Gaussian
mixture elements. Thus, their means and standard
deviations remain unaltered, where in reality the results
are the lower and upper tails of Gaussian distributions,
i.e., truncated Gaussians.

4) Fixed-size state representation: The program state
across all possible control flow paths, whose number is
exponential in the number of branches, is approximated
by a fixed-size Gaussian mixture.

While these assumptions permit a reasonable approximation
of small programs with mostly affine operations, they cause
substantial deviations for larger programs. When integrating
AD as described above, the resulting gradient estimates can
thus become inaccurate and noisy (cf. Section V). In the
following, we briefly sketch how the additional information
available via AD makes it possible to relax assumptions 1
to 3, but show that the effects of 4 dominate the error.

Improvements regarding assumptions 1 and 2 concern
operations of the form C = h(A,B). We restrict this example
to binary operations, as the n-ary case is analogous. As shown
in Figure 2, SI determines the mean µC and variance σ 2

C of
C from A∼N (µA, σ

2
A) and B∼N (µB, σ

2
B):

µC = h(µA, µB)

σ 2
C =

(
∂µC

∂µA

)2
σ 2
A +

(
∂µC

∂µB

)2
σ 2
B (5)

This is a standard result of uncertainty propagation (UP) [48]
and exact if h is an affine function and A and B are
independent. Linear dependencies (correlations) between A
and B can be accounted for by using the information obtained
by AD (cf. also the explanation in Fig. 2):

σ 2
C =

n∑
i=1

(
∂µC

∂µXi

)2
σ 2
Xi , (6)

where n is the number of inputs and the partial derivatives
are provided by AD (see Appendix B for a derivation).
Intuitively, this calculates the variance of C from the variance
of the inputs X , based on the transformations captured by the
gradient since the start of the program and leading to g, which
implicitly accounts for the covariance between A and B.
Closer and automatically differentiable approximations of the
distributions resulting from non-affine operations could be
determined using higher-order Taylor approximations [41],
at the cost of additional computational overhead.
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FIGURE 2. Example program (left) execution showcasing the probabilistic semantics of SI (center) and their integration with forward-mode
AD (right). Only relevant AD operations are shown. The tangents v̇ denote the (generally partial) derivative ∂v/∂µ̂X wrt. the mean µ of the
normally distributed random variable X ∼ N (µ̂X , σ̂2

X ). The hat ˆ symbol indicates an input value. Upon initialization, the (here scalar) input

vector x is taken as the mean µ̂X ; ϕ and 8 denote the normal distribution’s probability and cumulative density functions respectively. Note
that in this example the pathwise derivative is 0, but through the combination of SI and AD, the derivative wrt. the branching condition is
obtained.

Lifting Assumption 2 poses the largest challenge, as the
assumption of Gaussian distributions for all variables is the
main enabler of an easy integration with AD. To exclude
invalid intervals from the variables’ distributions on each
path state, interval bounds could be carried along with the
mean and variance for each mixture element [38]. Moving
beyond Gaussian distributions would require the tracking and
updating of higher-order moments or explicit representations
of the distributions’ shapes.

Assumption 3 can be lifted by calculating the trun-
cated Gaussian distributions resulting from a branch and
approximating them by their first two moments. This
requires obtaining the dependence of every variable on the
branching condition to determine the point of truncation for
each variable, which may be approximated by first-order
dependencies determined via AD.

To explore the effects of the enhancements on SI’s
fidelity, we carried out preliminary experiments with
correlation-preserving variance calculation via UP and
approximating the truncation at branches. However, we found
that the error incurred by restricting the state representation to
a small maximum number of paths (cf. Assumption 4) dwarfs

the benefits of these enhancements. Figure 3 showcases
this on a simple synthetic program (cf. Appendix C) by
comparing the combination of the original SI with AD, its
combination with UP (cf. Eq. (6)), and an unbiased stochastic
approximation of the exact convolution. While UP improves
the fidelity of the derivative to the convolution, restricting
the number of tracked paths introduces significant jumps and
deviations from the reference. The erratic results are caused
by the decision which paths to merge, which is not smooth
with respect to the program inputs: for a small change in
the input value, an entirely different set of merging decisions
may be made. As a consequence of this observation, and
since the state restriction dominates SI’s computational cost,
we abstain from exploring the above enhancements further
and instead focus on the Restrict [12] algorithm.

C. STATE RESTRICTION STRATEGIES
Tracking the effects of every possible branch in a program
execution quickly leads to a state explosion that renders
the execution of non-trivial programs intractable. Thus,
SI employs an algorithm to merge branches, enabling the
restriction of the state size to a user-defined limit M .
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FIGURE 3. Comparison of gradient fidelity wrt. the convolution with the
original SI proposal with 32 tracked control flow paths and with
correlation-preserving variance calculation using AD (uncertainty
propagation, UP). When reducing the number of tracked paths to a small
subset, as would be required for larger programs, the assumption of a
fixed-size mixture dominates the error. The non-smooth merging of
mixture elements causes the gradient to jump or even assume the wrong
sign, which is problematic for gradient descent.

The restriction is achieved by identifying and subsequently
merging two elements of the Gaussian mixture, such that
the cost defined as the deviation from the original overall
distribution is minimized, which involves calculations of
new means and standard deviations. As noted in [12], this
algorithm is optimal in the sense that it minimizes the
deviation from the overall original mixture. However, the
algorithm is computationally intensive, requiring an iteration
across the variables of all combinations of path states to
determine a pair of paths to merge. Further, merging two
dissimilar paths can result in high-variance mixture elements
and unreachable program states even according to a strict
probabilistic semantics. For example, refer to line 7 in Fig. 2.
If the two states were merged, this would result in Z ∼

N (0.5, 0.5) assuming thatw1 =w2 = 0.5. In other words, Z ’s
two possible crisp integer values are merged into a single
Gaussian, which can severely affect subsequent operations.
Here, we explore three alternate heuristics with different
tradeoffs in fidelity and computational cost.

In the Restrict algorithm, the cost of merging two variables
is determined by the difference in the mixture element’s
moments and by the paths’ weights. To avoid merging
dissimilar states, we can select paths to merge solely on the
moments and ignore the pathweights.We refer to this strategy
as Ignore Weights (IW).

On the other hand, by only considering the paths’ weights,
the expensive pair-wise comparisons among the paths’ states
can be avoided. In this strategy, which we refer to as Weights
Only (WO), the weight is used as a proxy for each variable’s
contribution to the gradient. Assuming sufficiently similar
mean values across paths, the weight is a good indicator of
a mixture element’s contribution to the final expected value
Eq. (4). Most importantly, since every variable on a given

path shares the same weight, a merge decision is reduced
to determining the pair of paths with the lowest weights.
A more radical strategy that aims for improved performance
and low variance at the same time is to discard (Di) paths
with the lowest weights entirely, avoiding the merging of
variables. The disadvantage of this strategy is that value and
gradient information from discarded paths is lost entirely,
whereas merging of path states retains the available gradient
information across all paths, albeit in an aggregated form.

Although IW,WO, and Di are suboptimal in the theoretical
sense, we will see in our evaluation (cf. Section V) that the
decrease in overhead and/or variance obtained through these
strategies can lead to faster optimization progress than the
strategy proposed by Chaudhuri et. al., which we abbreviate
as Ch.

D. MONTE CARLO APPROACH TO SMOOTH
DIFFERENTIATION
The assumption of Gaussian distributions and restricting the
state to a small subset of possible paths (cf. assumption 4)
cause the results of SI to deviate from the exact convolution
of the program’s output with a Gaussian kernel. As a
consequence, SI’s estimations of the program’s output and
its gradient may be significantly biased. In the following,
we present an alternative approximation of the probabilistic
program semantics based on Monte Carlo sampling and AD.

The key idea is to revisit the decomposition of the
program’s convolution with a Gaussian into a sum over the
control flow paths. From Eq. (4) it follows that the partial
derivative wrt. dimension k of the mean x for a program with
N control flow paths is given by:

∂P(X )
∂xk

=

N∑
p=1

∂E
[
Yp
]
wp

∂xk

=

N∑
p=1

∂E
[
Yp
]

∂xk
wp +

N∑
p=1

E
[
Yp
] ∂wp

∂xk
. (7)

For readability, we abbreviate the probability of taking the
control flow path p with the weight wp ≡ P(P = p) and the
expected value of the output distribution conditioned on p as
E
[
Yp
]

≡ E[Y |P = p].
We now consider the approximation using Monte Carlo

sampling, i.e., through repeated execution of the program
on inputs drawn from the input distribution. Note that the
presence of discontinuities disallows the interchange of the
differentiation and expectation operators in ∂E

[
Yp
]
/∂xk .

To still be able to rely on pathwise derivatives, we estimate
E
[
∂Yp/∂xk

]
and compensate for the effects of discontinuities

separately. The resulting estimator is similar to existing work
based on smoothed pertubation analysis [10], [14]. Averaging
across the pathwise derivatives of samples restricted to path
p using the indicator function 1 leads to the IPA estimator:

E
[
∂Yp
∂xk

]
= lim

S→∞

1
np

S∑
s=1

∂ys
∂xk,s

1P(xs)=p, (8)
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where S is the number of samples, the xk,s are sampled
from Xk ∼N (xk , σ 2), ys and P(xs) are the output and chosen
control flow path when running P on the sample xs, and np
is the number of samples on path p.
Each sample takes exactly one of the N paths, and the

weightwp of a path p is its probability of being taken, i.e., as S
tends to infinity, np/S approaches wp. Hence, the pathwise
derivatives are accounted for simply by:

N∑
p=1

E
[
∂Yp
∂xk

]
wp = lim

S→∞

N∑
p=1

1
np

S∑
s=1

∂ys
∂xk,s

wp1P(xs)=p

= lim
S→∞

1
S

S∑
s=1

∂ys
∂xk,s

. (9)

The remaining difficulty lies in the term ∂wp/∂xk from
Eq. (7), which depends on the distribution of the branch
conditions and their sensitivities to the program inputs. Given
a branch statement of the form ‘‘if (C<=d)‘‘, with d a
constant, we refer to the random variable B := C − d as
the branch condition. The branch condition is true, i.e., the
branch is taken, with probability P(B ≤ 0), which is the
cumulative distribution function of B evaluated at 0. In SI,
this probability is estimated based on the parameters of the
assumed Gaussian distribution of B, and its derivative can
thus be determined transparently via AD. To determine the
derivative in the general case, where Bmay depend arbitrarily
on x, let g be the function that describes the dependence of B
on x, i.e.: g(x) := B. Using the chain rule, we have:

∂Fg(x)
∂xk

=
∂Fg(x)
∂g(x)

∂g
∂xk

. (10)

Here, ∂Fg(x)/∂g(x)= fg(x) = fB is the PDF of the condition,
which we can estimate based on the samples, e.g., via kernel
density estimation. The second term ∂g

∂xk
is the derivative of

the branch condition wrt. xk . In a sampling-based regime, the
value of this term at 0 can be approximated by averaging
the exact AD derivatives for realizations in a neighborhood
[−δ, δ]. Using the approximation of the product fromEq. (10)
and denoting the sampling-based estimate of the branch
conditions’ PDF as f̃B, we arrive at the followingMonte Carlo
estimator for the derivative of the path weight of the ‘‘true‘‘
case at a branch encountered on path p:

∂wp
∂xk

≈
−f̃B(0)
Sc

S∑
s=1

∂g
∂xk,s

(xs)1P(xs)=p,|g(xs)|<δ (11)

and analogously with positive sign in the ‘‘false‘‘ case, with
c := (P(xs) = p, |g(xs)| < δ). The product of this term with
an estimate of the program output near the branch accounts
for the effect of a jump across the branch. By combining
Eq. 11 and Eq. 9, we arrive at our gradient estimator, which
we refer to as the DiscoGrad Gradient Oracle (DGO).

Since densitities are estimated, the approach is compatible
with program-inherent randomness across samples, the
presence of which may reduce or eliminate the need for
smoothing by perturbation of the inputs.

Each sample xs may encounter several branches along each
dimension k . For sufficiently large δ, each xk,s may thus
appear in the summation of Eq. (11) for multiple branches.
This situation is not accounted for since the contribution of
each individual sample only captures the output’s derivative
on its encountered control flow path without explicitly
considering the (transitive) effects of taking alternative paths.
We treat this case heuristically by assigning an affected
sample the path weight derivative wrt. the relevant dimension
of the branch with the most equal distribution of samples
between [−δ, 0] and (0, δ].

For the problems considered in our evaluation, we found
that it sufficed to set δ to ∞, indicating that the benefit of
collectingmore samples per dimension and branch outweighs
the bias in the pathwise derivative introduced by choosing
a larger neighborhood. Even so, deeply nested branches can
lead to only small numbers of samples being observed at each
branch. This problem can be mitigated by translating nested
branches to sequential branches, which was straight forward
for the problems considered in Section V.

E. DISCOGRAD: SMOOTH DIFFERENTIATION OF C++
PROGRAMS
DiscoGrad is a tool to translate programs written in a subset
of C++ to a smooth representation in order to execute
them according to an approximate probabilistic semantics
and to estimate the smooth programs’ gradient. The tool is
comprised of two main parts: a set of header-based back-ends
that implement AD, SI, and AD-guidedMonte Carlo gradient
estimation on one hand, and source-to-source transformations
implemented via the LLVM compiler toolchain to generate
estimator-specific code that makes use of the respective back-
end. To allow for a meaningful evaluation of execution times,
the code was carefully profiled and optimized using standard
techniques such as early returns, avoiding unnecessary copy
operations, and minimizing dynamic memory allocation.

Fig. 4a depicts a basic DiscoGrad program that implements
the Heaviside function. In the main function, instances
of DiscoGrad and DiscoGradFunc are created as
interfaces to the chosen estimator’s backend. In this example,
the user function _DiscoGrad_f() initializes smooth
variables of type sdouble using an input mean value and
variance, branches on the smooth variable x, and returns the
resulting expectation of y. The listed program is the input to
the smoothing transformation, which is applied to any user
function prepended with the string _DiscoGrad_. After
compilation, the smoothed program outputs the expectation
returned by the user function along with its gradient.

At present, besides crisp code, which remains unmodified,
DiscoGrad’s smoothing transformation supports mathemati-
cal operations and assignments on any combination of crisp
and smooth variables, conditional branching, loops, functions
on smooth variables, references, and pointers to smooth
variables as well as simple uses of containers. Among the
features currently not implemented are smooth versions of
the ternary operator, switch statements, and global variables.
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FIGURE 4. Example DiscoGrad program (a) and the smoothed versions of the contained branch for SI (b) and DGO (c).

DiscoGrad’s features and limitations are documented in our
repository,2 where the full source code and the programs used
in the evaluation in Section V-A can be accessed.

1) AD IMPLEMENTATION
DiscoGrad includes an implementation of forward-mode AD
based on operator overloading. At first appearance, reverse-
mode ADmight seem preferable, since it covers the common
case of differentiating programs mapping large numbers of
inputs to a single output in a single reverse pass. However,
forward-mode AD provides two key benefits in our problem
setting: firstly, its memory consumption is independent
of the number of operations carried out by the program.
In contrast, reverse-modeADmaintains a tape inmemory that
grows linearly with the number of operations. Furthermore,
in combination with SI, the memory consumption for the
tape multiplies with the number of tracked control flow
paths. Secondly, forward-mode AD allows us to determine
a variable’s derivatives with respect to the inputs at any
time throughout a program’s execution without further cost,
in contrast to the reverse passes that would be needed with
reverse-mode AD. This allows us to efficiently determine
the derivatives of branch conditions to the inputs in our
implementation of the Monte Carlo estimator described in
Section IV-D.
In our implementation, a variables’ tangents (partial

derivatives) with respect to the inputs are carried along as
arrays, allowing for compiler vectorization of the tangent
operations.3 To exploit the frequent case of variables carrying
at most one non-zero tangent, full tangent arrays are allocated
lazily only once required. A pool of tangent arrays is
maintained to avoid frequent explicit memory allocations and
deallocations when variables are created or destroyed. While
naive forward-mode AD incurs a slowdown factor equivalent

2https://doi.org/10.5281/zenodo.10288017
3We verified that in the code generated by Debian clang, version 11.0.1-2,

the tangent operations were translated to AVX instructions.

to the input dimension, we will see in Section V-C that
these simple implementation-level design decisions suffice to
reduce the AD overhead to a more tolerable level.

2) SI IMPLEMENTATION
Executing a program according to the probabilistic semantics
of SI deviates from a regular ‘‘crisp’’ execution in two main
regards: firstly, when encountering a branching statement,
both the then and the else case is visited. Doing so
repeatedly generates an exponential number of path states
representing the variables’ values resulting from different
branch sequences, which is restricted to a configurable
maximum number to constrain the memory consumption
and execution time. Secondly, the mathematical, logical,
and comparison operations of the original program are
widened to operate on all present path states. On each
path state, operations originally carried out on scalars are
executed on Gaussian distributions represented by their first
two moments. DiscoGrad takes a similar approach to the
original implementation of SI in the EULER tool [49], but
allows for the use of smoothed variables with C++ features
such as containers and references, integrates SI with AD,
and implements the state restriction strategies presented in
Section IV-C.
The key idea is for the source-to-source transformation to

flatten the program’s control flow across all branches so that
all branch bodies are visited and to delegate the management
of the variable states in the different control flow paths to
our back-end library. In the back-end, the program state is
managed by an instance of type SiStack, which holds the
path states that are active at the programs’ scopes, with the
state in the currently visited scope (e.g., the then-body of
an if-else statement) at the top (cf. Fig. 4b). The type
sdouble (smooth double) overloads the operations defined
for double, carries them out for all active paths in the
current scope, and substitutes originally crisp mathematical
operations by operations on the moments of Gaussians. Each

VOLUME 11, 2023 143199



J. N. Kreikemeyer, P. Andelfinger: Smoothing Methods for Automatic Differentiation Across Conditional Branches

path state’s weight is a floating-point variable subject to
differentiation via our AD implementation. Similarly, the
mean and optionally also the variance of each Gaussian value
representing a mixture element are differentiable variables.

Given an if-else statement with a condition l <= r
where at least one of l, r evaluates to type sdouble,
DiscoGrad determines on each active path state p the
conditional probability Pp(l−r ≤ 0) of entering the branch.
The other inequality operators are handled analogously. For
each existing path state, two new path states representing
the then and else cases are created with the new weights
determined by multiplying the conditional probability and
its complement with the original path’s weight. Paths with
weights below a configurable threshold (set to 10−20 in the
evaluation) are discarded due to their negligible impact on the
program’s output and to avoid arithmetic underflow. Smooth
loop constructs are supported by exiting a loop once no path
state with sufficient probability enters another iteration.

At a branch, DiscoGrad first halves the number of active
paths using one of the state restriction strategies Ch, IW,
WO, and Di described in Section IV-C to make it possible
to generate new paths. As we will see in our evaluation,
the overhead incurred by this step is decisive for the overall
execution time under SI. For the computationally expensive
Ch strategy, we cache previously computed merge costs
among the path states as long as they remain unchanged and
maintain a priority queue to efficiently select the next pair of
states to be merged.

3) DISCOGRAD ORACLE (DGO) IMPLEMENTATION
OurMonte Carlo estimator DGO (cf. Section IV-D) estimates
the gradient of the smoothed program based on a series
of runs on perturbed inputs. Since the individual samples
follow the control flow of the original crisp program,
an implementation of DGO is vastly more lightweight
compared to SI. Here, the type sdouble maps to a
single scalar floating-point number differentiable via our AD
implementation, without any probabilistic semantics.

The source-to-source transformation simply prepends each
if-else statement with a condition of the form l <= r
by a call that passes l − r to our back-end, and analogously
for the remaining inequality operators (cf. Fig. 3c). For
each sample, the condition values in a neighborhood [−δ, δ]
and their derivatives are gathered in order to estimate the
weight derivative according to Section IV-D. The mean of
the conditions’ gradients is computed on the fly via AD,
as is the overall pathwise gradient of the sample. Having
collected the branch conditions, we estimate the probability
density of the condition values at each branch using kernel
density estimation with a Gaussian kernel.

Subsequently, we iterate over the branches encountered by
each sample to assign the sample the path weight derivatives
along its path. Finally, the pathwise gradients and the path
weight derivatives are combined according to the summation
of Equation Eq. (7) to yield the DGO estimate of the gradient.

V. EVALUATION
Bringing everything together, we perform an extensive
empirical evaluation of the proposed gradient estimators with
respect to their execution times and fidelity, comparing them
to two other estimators. We combine them with the Adam
gradient descent procedure to solve optimization problems
and also compare against global optimization techniques.

In all experiments, we distinguish two types of replications.
A single run of a program at a given solution is a microrepli-
cation. For stochastic programs, several microreplications
are carried out, averaging the partial derivatives across
microreplications. A macroreplication is a replication of an
entire experiment (optimization, parameter sweep) starting
from an initial solution and spanning a series of microrepli-
cations. When multiple macroreplications are executed, all
estimators are configured with the same sequence of starting
solutions across macroreplications.

All measurements of execution times and optimization
progress were carried out on a machine equipped with a
16-core AMD Ryzen 9 7950X processor and 64 GiB RAM
running Debian GNU/Linux 11, running at most 16 processes
in parallel.

A. SELECTED NON-SMOOTH OPTIMIZATION PROBLEMS
Based on well-known optimization problems from the
literature and practical applications, we implemented four
evaluation problems dominated by discontinuous control
flow. An overview of the problems is provided in Table 1.

1) TRAFFIC LIGHTS
The TRAFFIC dxd problem is a deterministic macrosimu-
lation of a road network using a simple form of the cell
transmission model [50] covering a two-dimensional grid
of four-way intersections with dimensions d × d over d
time steps. Vehicles are represented as populations (vehicle
counts) per lane. At each time step, d new vehicles are
created at the northern and/or western border of the grid, each
with a general movement direction to the opposite border
interrupted by rare predetermined turns. The traffic flow
at each intersection is organized by a signal that alternates
between green and red phases of two time steps each for the
horizontal and vertical lanes, allowing at most one vehicle
per step and lane to advance to the next intersection. The
parameters of this problem are the d2 traffic light phase
offsets for each intersection and the objective is to maximize
the total number of intersections passed by the vehicles
throughout the simulation. Here, discontinuities arise from
the discrete switching of the traffic signals.

2) AIR CONDITIONING
The second problem, taking inspiration from [38] and later
referred to as AC, considers the optimal control of an air
conditioning unit by a neural network. An insulated room
with a single window is simulated over 10 time steps. Over
time, the temperature of the room gradually approaches
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TABLE 1. Overview of the benchmark problems.

the outside temperature according to the room’s insulation.
With a probability of 5% per step, the window is opened,
decreasing the insulation drastically. The task of the AC is
to keep the temperature of the room as close to a chosen
target as possible by deciding on its on/off state and the
cooling power (2 neural network outputs), given the target,
previous, and new temperature together with its previous
action (5 neural network inputs). Each time the AC activates,
an energy penalty is incurred. For each simulation, the initial,
target, and outside temperature, as well as the insulation
are chosen randomly to force the network to generalize.
Considering the feedback from the previous’ time steps
inputs and outputs, this problem can be viewed as training
a recurrent neural network. The problem parameters are the
82 weights of the one layer deep network and the objective
is the minimization of the loss function defined as the sum
of the average mean squared error over time and the energy
penalties. Discontinuities arise both from the on/off state of
the AC and the discrete randomness of the window opening
event.

3) HOTEL BOOKING
The third problem is a revenue maximization problem from
the SimOpt benchmark suite [51], [52] and considers the
optimal booking of a hotel. The hotel offers 100 rooms via
56 ‘‘products’’ reflecting the guests’ arrival days within a
week, the lengths of their stays, and two different rates: a rack
rate and a discount rate. Over the course of one week, guests
arrive and request products according to per-product Poisson
processes with predefined rates. The number of bookings
is restricted by a per-product booking limit. Whenever a
requested product’s booking limit is greater than zero, the
guest can be accommodated, and the booking limits for all
products are decremented to account for the reduced room
availability on the days covered by the product. Here, the
goal is to maximize the revenue by adjusting the products’
interdependent booking limits to the guests’ arrivals. The
parameters are the 56 booking limits, each with an upper
bound of 100. Discontinuities are caused by the discrete
decisions of whether a guest’s request for a product can be
satisfied.

4) DISEASE SPREAD
The final problem is an agent-based SIR (susceptible,
infected, recovered) simulation of disease spread similar

to [7]. Over 25 time steps, a population of 200 individuals
moves on an undirected graph topology generated as a ran-
dom geometric graph with 100 nodes (locations) and average
degree ≈ 7. Initially, agents are infected with a certain
probability. Upon infection, a recovery time is scheduled with
a delay drawn from an exponential distribution. Throughout
the simulation, agents move along predetermined paths along
the edges of the graph, being infected by their neighbors
at the same location and recovering at their scheduled time.
The probability of being infected depends on a per-location
coefficient. The 102 parameters of this problem are the
initial infection probability, the mean recovery time relative
to the simulation end time, and the location-specific infection
probabilities. The objective is to fit a previously generated
progression of the epidemic by minimizing the mean squared
error between the distribution of agent states at each
location and the states recorded in the reference trajectory.
Discontinuities arise due to the discrete randomness in the
infections, which occur via Bernoulli trials, as well as the
discrete recovery event.

B. GRADIENT ESTIMATORS
The objective of the evaluation is to determine the utility
of our gradient estimators DGSI and DGO for solving the
optimization problems defined in the previous section by
gradient descent. We chose the popular Adam optimizer due
to its well-known applicability to noisy gradient estimates
[53]. As points of reference, we employ the PGO [25] and
REINFORCE (RF) [13] estimators. Smooth gradients are
calculated by sampling over a set of normally distributed
random perturbations of the program parameters, making
REINFORCE also applicable to deterministic problems such
as TRAFFIC (cf. Appendix A for a complete derivation).
More formally, we use the following reference estimators to
obtain the smoothed gradient ∇̃x :

∇̃
PGO
x P(x) = lim

S→∞

1
S

S∑
s=1

P(x + σus) − P(x)
σ

us (12)

and

∇̃
RF
x P(x) = lim

S→∞

1
S

S∑
s=1

P(x + σus)
σ

us, (13)

where us ∼N (0, I) are iid. variates of the standard multi-
variate normal distribution and σ is the smoothing factor
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TABLE 2. Overview of evaluated gradient estimators. All estimators are
combined with the Adam optimizer.

(i.e., standard deviation). Notice how this formulation of
REINFORCE, where the stochasticity is introduced by
random perturbations, is very similar to PGO.

We note that, for stochastic problems, REINFORCE
may also directly exploit the problem-specific stochasticity,
but only if the log-derivative is known. As our problems
allow arbitrary probability distributions, the log-derivative
is difficult to obtain in general. Further, our proposed
mechanisms and PGO work fully automatically, i.e., in a
black-box setting. We thus evaluate REINFORCE in the
same setting. Additionally, PGO can be combined with a
random search as described in [25] and [26]. The random
gradient-free search algorithm described therein can be
viewed as only taking one sample from PGO per step of
descent. In this evaluation, we limit our scope to performing
gradient descent, leaving the random search and possible
interesting integrations with the Adam optimizer as future
work (cf. Section VI).
This leaves us with four optimization procedures. For

brevity, we only show the estimator and number of samples
(or tracked control flow paths), as they are all combined
with Adam, for example ‘‘PGO/100’’ for PGO estimator with
100 samples or ‘‘DGSI/Di/4’’ for our SI implementation with
four tracked control flow paths, using the Discard restriction
strategy (cf. Table 2).

In the following, we perform three types of evaluation.
First, we evaluate the scalability in terms of computation
time and memory (Section V-C) and the gradient error
(Section V-D). Testing the practical impacts of the former
two, we conclude with an evaluation of the optimization
performance (Section V-E). For the evaluation of optimiza-
tion performance, we also compare two popular global
optimization algorithms that would typically be applied to
solve our non-smooth and non-convex problems: a standard
genetic algorithm (GA) with elitism (as provided by the
pyeasyga module4) and simulated annealing (SA) (by
porting the version from the Ensmallen library5 to Python).

4https://github.com/remiomosowon/pyeasyga
5https://ensmallen.org/docs.html#simulated-annealing-sa

FIGURE 5. Slowdown of the different gradient estimators compared to a
crisp execution without AD, normalized to reflect the slowdown per
sample (Monte Carlo estimators) or path (DGSI).

Our measurements of execution time and optimization
progress over time exclude process startup times to avoid
disadvantaging the existing baseline approaches without AD,
which are typically faster and thus more strongly impacted by
startup times.

C. EXECUTION TIME
All of the AD-based gradient estimators incur an overhead
over a crisp program execution without AD. Here, we evalu-
ate the scaling of the estimators’ wall-clock execution time
with the number of samples or paths. Each measurement
was repeated one hundred times, resulting in 95% confidence
intervals smaller than 7% of any of the shown averages.

Figure 5 shows the slowdown of different configurations
of the estimators over a single crisp program execution
without AD, normalized to the number of paths or samples
and rounded to two significant digits. Each value can be
interpreted as the slowdown per path or sample.

The overhead for the IPA estimator comprises only the cost
of AD and the negligible cost of random number generation
for the perturbations. In the EPIDEMICS, HOTEL, and
TRAFFIC problem, we see the benefit of the simple sparsity
optimization in our AD implementation. In these problems,
similar to the extreme case of the Heaviside function shown
in Fig. 1, the program’s smoothed gradient depends mostly
on the branches taken, with only limited arithmetic on
variables that directly depend on the input parameters. As a
consequence, most variables do not carry a tangent value and
the slowdown factor remains far below the input dimension,
which would be the expected slowdown with naive forward-
mode AD.When increasing the number of samples, the reuse
of tangent vectors (cf. Section IV-E1) allows the overhead
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per sample to gradually diminish. In contrast, in the AC
problem, the output has a non-zero pathwise gradient with
respect to the neural network coefficients. Hence, most
intermediate variables carry tangents with respect to all inputs
and the slowdown becomes more pronounced. Still, due to
vectorization of the AD operations, the slowdown for IPA
with 1 000 samples is only about a quarter of the input
dimension of 82.

Our Monte Carlo estimator DGO involves a configurable
number of AD-enabled program executions, additional book-
keeping at branches, and kernel density estimations. We see
that accordingly, the slowdown is somewhat larger than
IPA’s. However, we observe sublinear scaling behavior when
increasing the number of samples. Since branch condition
values are stored and operated on per branch, the impact of
the base costs for the per-branch operations diminishes with
larger numbers of samples. As with IPA, the AC problem,
which involves more input-dependent arithmetic operations,
entails higher overhead.

SI incurs the cost for AD and carrying along Gaussian
distributions across several control flow paths, as well as
for restricting the state according to the chosen strategy.
Depending on the program and state restriction strategy,
the number of control flow paths can fluctuate and may
not always saturate the configured upper bound. Hence,
we normalize to the effective number of control flow paths
throughout the program’s execution, which we define as the
average number of paths active when encountering a branch.
Since the state restriction is applied before branches and
dominates SI’s execution time, normalizing to the number of
paths at that point captures the main cost of the different SI
estimators. As expected, the slowdown of SI is much larger
compared to the other estimators. The restriction strategies
based on merging paths (Ch, IW, WO) are up to two orders
of magnitude more expensive than ‘‘discard’’ (Di). The cost
of selecting the next paths to be merged is negligible for WO,
while it is quadratic in the number of paths for Ch and IW.
For all three of Ch, IW, and WO, the cost for the subsequent
merging of paths is linear in the number of variables. The
results for the EPIDEMICS problem, which uses the largest
number of variables of the considered problems, show the
resulting enormous overhead of the merging-based strategies,
with only modestly better scaling using WO. The DGSI
estimators based on merging incurred the lowest overhead
in the HOTEL and AC problems, which is a consequence
of their comparatively smaller number of variables and
branches.

Overall, a substantial slowdown is observed with all of
the smoothing estimators, ranging from a factor of about
two to several orders of magnitude compared to a single
crisp execution. In particular, the overhead of DGSI with
the restriction strategies based on merging paths is likely
to put many real-world applications out of reach. Whether
each estimator’s overhead can be justified depends on the
fidelity of the calculated gradients and the resulting progress

FIGURE 6. Error in the gradient estimate over different problems and
estimator parametrizations (lower is better). Each cell reflects the mean
absolute error (MAE) wrt. to the baseline (PGO/500 000), averaged over
the first ≤ 25 model dimensions. The lowest error is provided by PGO and
DGO, with the best result for REINFORCE magnitudes higher. For DGSI,
a consistent decrease in the error with the number of paths can generally
not be observed. In some cases, this is also true for DGO, signaling a
potential bias in the estimate.

in parameter synthesis problems, which we evaluate in the
next sections.

D. GRADIENT FIDELITY
In this section, we provide empirical measurements of the
estimated smoothed gradient fidelity in terms of the mean
absolute error, which is defined in the dimension k for the
input vector x as:

MAE(g, k) =
1
S

S∑
s=1

∣∣∇̃g
k P(xs) − ∇̃k P(xs)

∣∣ , (14)

where x1, . . . , xS is a sequence of sample points and ∇̃
g
k

indicates the k-th component of the smoothed gradient
estimate of the estimator g∈ {DGSI, DGO, PGO, RF}, i.e.,
the partial derivative ∂P(xs)/∂xk,s. To retrieve the MAE
in dimension k , we uniformly sample from these partial
derivatives in a problem-specific range in dimension k around
an optimal value for x, as determined by optimization.

Evaluating this error is challenging, as for large problems
it is expensive to calculate the exact smoothed gradient
baseline ∇̃P(xs). Thus, we use a large number of samples
(5 × 105) of the unbiased PGO to produce a baseline with
maximum 95% confidence intervals of 0.003 (AC), 0.014
(TRAFFIC 2x2), 0.033 (TRAFFIC 5x5), 0.425 (HOTEL) and
7.3 (EPIDEMICS). The wide maximum confidence intervals
for the HOTEL and EPIDEMICS baselines can be attributed
to some large partial derivatives in these problems (cf. Fig. 8).
To reduce the computation time, we evaluate all problems in
a deterministic setting by configuring a fixed seed and only
consider the first ≤ 25 partial derivatives.

Fig. 6 shows an overview of the MAE wrt. the respective
dimensions of the AC, TRAFFIC, HOTEL and EPIDEMICS
problems. The MAE, as indicated by the cell color intensity,
is the average of the MAE defined in Eq. (14) over
the first k = 1, . . . , 25 dimensions of each problem. The
first result is that, with some exceptions, the error of all
sampling-based estimators decreases with the number of
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FIGURE 7. Partial derivatives wrt. the signal offsets of the TRAFFIC 5x5
problem, as calculated by different gradient estimates. Here and in the
following figures, the centered vertical bar indicates the optimal value
around which the samples were taken. In this fairly easy problem, all
estimators deliver accurate partial derivatives.

FIGURE 8. Partial derivatives wrt. the recovery rate (x0), initial infection
probability (x1) and location-specific infection probabilities x4 and x6 of
the EPIDEMICS model, as calculated by different gradient oracles. Using
the PGO estimator with 500 000 samples as an unbiased baseline, the
fidelity varies drastically among estimators, but also the problem
dimensions. In particular, DGSI produces derivatives that are much too
small.

samples. However, the estimators differ in howmany samples
they need to obtain the same fidelity, with our application
of the REINFORCE estimator requiring orders of magnitude
more samples than PGO and DGO. Overall, our DGO
estimator slightly outperforms the PGO estimation in terms of
sample efficiency, although in some scenarios a bias prohibits
further improvement with the number of samples. The DGSI
estimation is also very close to the baseline in many cases.
Especially on smaller problems such as TRAFFIC 2x2, DGSI
exhibits a competitive error, delivering good results even with
only 8 tracked paths. As expected, the Di restriction strategy
is less accurate than the more expensive Ch. Additionally, the
error varies drastically between problems for all estimators.

A more granular view of these findings is depicted in
Figures 7, 8 and 9, which show a comparison of selected

FIGURE 9. Partial derivatives wrt. neural network parameters of the AC
problem, as calculated by different gradient oracles. In this problem, the
DGO and DGSI estimators can profit from their accurate pathwise
gradient, while PGO exhibits a lot of noise. The DGSI estimator is severely
biased and thus plotted on a separate scale (right), but is able to capture
the trends correctly.

partial derivatives as line plots. The vertical bar in each plot
represents the optimal value, around which the samples of the
partial derivative were taken. In Fig. 7 it can be seen that for
relatively low-dimensional problems, DGO and DGSI deliver
almost perfect results, and the optimum could be identified
at the parameter values where the partial derivatives cross 0.
From Fig. 8 it is evident that some problem dimensions pose
greater challenges to smoothed derivative estimation than
others. For example, the estimates wrt. the location-specific
infection probabilities x4 and x6 are much noisier than those
wrt. the relative recovery time x1; the estimates wrt. some
of the dimensions seem to be biased for DGO and DGSI.
Additionally, DGSI delivers a gradient that is significantly
smaller than the baseline and sometimes (erroneously) zero.
This can be attributed to the fixed size of the state tracked by
SI, which necessarily results in a loss of smoothed derivative
information for sufficiently large problems. Interestingly,
in the AC problem, the gradients delivered by DGSI are also
much smaller than the baseline, but can still capture the trend
very well (cf. Fig. 9). On this problem, DGO is vastly less
noisy than PGO, which can be attributed to the use of the
exact pathwise derivative.

To conclude, we observe that with some exceptions where
the gradient estimates are biased, DGO delivers accurate
results. Where it can exploit the pathwise derivative, the
results exhibit less variance than the baseline PGO estimate.
DGSI is competitive in terms of the MAE on smaller
problems with low dimensionality, beating every other
estimate on TRAFFIC 2x2, and obtains less noisy derivatives
than the sampling-based estimators in these cases. On larger
problems, it incurs a bias, but can often still capture the
underlying trend. The effects of the observed differences in
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fidelity on the estimators’ utility for gradient descent are
evaluated in the next section.

E. OPTIMIZATION PERFORMANCE
The optimization progress using the gradient-based appro-
aches hinges on a suitable choice of the input standard
deviation and the learning rate of the Adam optimizer.
Varying these two hyperparameters affects the degree to
which the computed gradients accord with the original
function on one hand and the ability to escape local minima
on the other hand. Here, we identified for each problem
one combination (σ0, η0) of standard deviation and learning
rate where good progress was made with all estimators.
An automated hyperparameter sweep was then carried out
covering three levels for each hyperparameter, covering all
combinations of σ0 · ( 12 , 1, 2) and η0 · ( 12 , 1, 2). As additional
hyperparameters, we further varied the number of samples
used by the stochastic gradient estimators, and for DGSI the
number of paths and the path restriction strategy. Across all
problems and optimization methods, we carried out 3 310
macroreplications, resulting in a total CPU time of about
3 085 hours.

Where not stated otherwise, we show for each estimator
the results of the hyperparameter combination that yielded
the best solution at the end of the time budget. At each
solution determined via a smoothing estimator, we carried
out an additional evaluation using the crisp program. The
plots show the results of the crisp evaluation to ensure
comparability of the solution qualities even if the smoothed
program deviates from the crisp one. After observing a
premature convergence of simulated annealing (SA) to low-
quality solutions, we decreased its hyperparameter λ, which
determines the relative decrease in temperature per step, from
its default value of 10−3 to 10−5. Nevertheless, due to a lack
of significant progress, the results for the SA are excluded
from most plots.

Our plots show the optimization progress over wall-clock
time and optimization steps. Each data point in our results
is the average of five macroreplications carried out for the
respective combination of problem, estimator, and hyperpa-
rameters. While the progress over time is the main concern
for practical purposes, the progress over steps indicates the
strides made when disregarding differences in execution
time. For the gradient-based estimators and SA, one step
represents an evaluation of the objective function at one
solution across the configured number of paths or samples
for the smoothing estimators. For the genetic algorithm (GA),
one step represents an update from one generation to the
next, which involves 50 function evaluations, one for each
population member.

Figure 10 shows the optimization progress for the HOTEL
problem. Apart from SA and REINFORCE, all methods
converge to a similar revenue of about 53 200 within the time
budget of thirty minutes. The fastest convergence is achieved
by the GA, albeit to a slightly worse solution than the best-
performing methods. Comparing the stochastic estimators,

PGO performed best with 1 000 samples, in contrast to
100 samples with DGO. Figure 10b, which shows the first
500 optimization steps, indicates that the DGO’s higher
variance with only 100 samples leads to less progress per
step compared to PGO/1000. DGSI performed best with the
‘‘discard’’ (Di) restriction strategy and with four paths, also
converging to roughly the same solution quality as DGO
and PGO. Inspecting the solutions, we observed that all
three of these methods arrived at similar final parameter
combinations.

In the EPIDEMICS problem (cf. Figure 11), PGO/100 and
particularly the GA outperform the other methods. We have
seen in Section V-D that DGO and PGO both struggled to
accurately estimate the gradient for this problem, in which
there is a complex interplay between the initial infection
probability, the recovery rate, and the per-location infec-
tion probabilities. Here, GA converges extremely quickly,
identifying a solution that is reached by PGO/100 only at
the end of the time budget. Considering the progress over
the first 50 steps, we see that DGO makes larger strides
than all other gradient estimators, indicating that its slower
progress over time is a result of its higher execution time
rather than lower-fidelity gradient estimates. With DGSI,
the convergence both over time and steps is too slow to be
competitive.

Of our problems, AC is the only one in which some of
the partial derivatives are non-zero in the crisp case. Hence,
the classical IPA estimator can be applied, albeit without
capturing the discontinuities generated by the decision
whether cooling is activated in a time step. As Figure 12
shows, all methods apart from SA were able to reduce the
cost function to below 2.4, with the best solutions obtained
by PGO/100 and DGSI with the IW strategy and eight paths.
IPA/1000 made very little initial progress, but approached
the other methods’ results at the end of the time budget.
Studying the AC controller’s behavior, all of the solutions
obtained by the listed methods activate the cooling whenever
the temperature is higher than the target. However, the best
two solutions identified by PGO and DGSI result in a more
careful selection of the degree of cooling according to the
current insulation and the energy cost. Here, in contrast to the
other problems, DGSI benefits from the existence of non-zero
pathwise gradients, for which AD delivers exact values.

Finally, we consider the TRAFFIC problem at the three
scales of 10 × 10, 20 × 20, and 40 × 40 resulting in
100, 400, and 1 600 decision variables. Figure 13 shows
the results for the 10 × 10 grid. In accordance with the
fidelity results from Section V-D, where we have seen that
DGO produces highly accurate gradients for this problem,
the fastest convergence over the optimization steps by far
is achieved by DGO/100, which still holds when plotted
over optimization steps. Here, GA was not able to improve
beyond the initial solution. In contrast to SA’s results in
the other problems, it is able to make substantial progress
within the time budget, while still not being competitive
with the best-performing methods. REINFORCE is once

VOLUME 11, 2023 143205



J. N. Kreikemeyer, P. Andelfinger: Smoothing Methods for Automatic Differentiation Across Conditional Branches

FIGURE 10. Optimization progress of the best-performing parametrization of each estimator for the HOTEL problem over optimization
steps.

FIGURE 11. Optimization progress of the best-performing parametrization of each estimator for the EPIDEMICS problem.

FIGURE 12. Optimization progress of the best-performing parametrization of each estimator for the AC problem.

again outperformed by PGO/100. DGSI with the Ch strategy
behaved somewhat similarly to SA, but having completed less
than 300 steps was unable to obtain a competitive solution.

Similar trends are observed in Figure 14 for our largest
problem TRAFFIC 20 × 20. We omit DGSI and REIN-
FORCE, which did not make substantial progress. Here,
DGO/100 provides the fastest convergence and the best
solution, slightly better than PGO/100 and PGO/1000.

DGO/1000 exhibits vastly faster convergence over steps, but
finished only about 150 steps within the time budget.

Since PGO and DGO consistently outperformed the
other methods in the TRAFFIC problem, we limited the
computationally intensive experiment on the 40 × 40 grid
to these two estimators with their respective best-performing
hyperparameter combination from the 20 × 20 experiment.
Figure 15 shows that for this problem with 1 600 decision
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FIGURE 13. Optimization progress of the best-performing parametrization of each estimator for the TRAFFIC 10x10 problem.

FIGURE 14. Optimization progress of the best-performing parametrization of each estimator for the TRAFFIC 20x20 problem.

FIGURE 15. Optimization progress of the DGO and PGO estimators for the TRAFFIC 40x40 problem.

variables, DGO/100 vastly outperforms both PGO/100 and
PGO/1000 over time, andDGO/1000 over optimization steps.
Here, DGO benefits from its use of AD to separate the
effects of the individual input dimensions, whereas PGOmust
rely on the scalar program output alone.

The optimization progress measurements are summarized
in the heatmaps shown in Figures 16 and 17, which indicate
each method’s progress relative to the best improvement
over the initial solution made by any method. For the traffic
problems, we only show the methods that made significant
progress for at least one problem size.

In summary, DGSI has proven to swiftly determine
high-quality solutions for the HOTEL and AC problems,
in which the effects of choosing alternate branches are less
extreme than in the other problems. Particularly good results
were seen for AC which is the only of the considered
problems in which the pathwise gradient is non-zero. Gen-
erally, the stochastic estimators PGO and DGO delivered the
most reliably high-quality solutions within the time budget.
While our AD-based estimator DGO showed outstanding
performance, particularly in the TRAFFIC problem with
large numbers of input dimensions, the existing estimator
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FIGURE 16. Overview of the optimization progress over the time budgets
for the HOTEL, AC, and EPIDEMICS problems.

FIGURE 17. Overview of the optimization progress over the time budgets
for the TRAFFIC problem.

PGO has the benefit of being applicable to existing programs
without instrumentation.

VI. CONCLUSION
Although an evaluation of gradient estimators targeting
a problem domain as broad as parameter synthesis must
necessarily be limited in scope, we identify several trends in
our results.

The objective functions of the considered optimization
problems are discontinuous and non-convex. Nevertheless,

local search based on gradient descent consistently outper-
formed global search via a genetic algorithm or simulated
annealing. Our results indicate that both for stochastic
and non-stochastic problems, the local search is able to
escape local minima sufficiently to swiftly identify high-
quality solutions, likely due to the combination of noisy
estimates with Adam. Future work dedicated to more
extensive benchmarking could consider more sophisticated
global optimizationmethods such as recent trust region-based
algorithms [54] or metaheuristics [55].

Each of the studied gradient estimators comes with
tradeoffs. The estimators that combine smooth interpretation
and automatic differentiation (DGSI) incur a substantial
cost in execution time, depending on the state restriction
strategy and the number of control flow paths carried along.
Notably, we saw that even if the fundamental approximations
made by smooth interpretation were lifted, the need to
combine or discard intermediate state severely impacts the
gradient fidelity. Accordingly, DGSI excels at problems with
only limited branching or where the effects of branches
are relatively constrained, i.e., non-chaotic problems. Future
efforts to improve the gradient estimation via smooth
interpretation should thus focus on robust state restriction
strategies.

Our proposed estimator using automatic differentiation and
Monte Carlo sampling (DGO) is vastly less computationally
expensive and avoids the various approximations made
in smooth interpretation. A key limitation is the need to
obtain a sufficient number of samples at each branch,
which may require many replications in the presence of
deeply nested branches. In the considered problems, where
nested branching could be reformulated into sequential
branching, the fidelity of DGO was always among the
best of the considered estimators. DGO’s combination with
Adam provided competitive convergence behavior for all
problems, vastly outperforming its closest competitor in our
highest-dimensional problem. Our tool DiscoGrad offers an
efficient implementation of DGSI and DGO to automate
the estimations via DGSI and DGO for programs written in
C++.
Considering the existing estimators, a remarkable obser-

vation is that Polyak’s Gradient-Free Oracle (PGO), which
does not require AD, exhibited low execution times and
provided good results in all experiments. We thus consider
PGO and the closely related gradient-free algorithmNesterov
Random Search [25], [56] promising alternatives to global
search across high-dimensional parameter spaces, even for
non-convex problems.

In our experiments, we carried out a hyperparameter
sweep to identify suitable combinations of learning rates,
degrees of smoothing, and numbers of samples. Since
these hyperparameters interact, our future work will include
an exploration of scheduling algorithms that jointly select
combinations of these hyperparameters and adjust them
throughout the optimization process.
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APPENDIX A
REINFORCE FOR DISCRETE PROGRAMS
The following is a derivation of the REINFORCE estimator
for deterministic programs P , which works by perturbing
the input vector x with Gaussian noise. Through the log-
derivative trick, REINFORCE is defined as:

∇θ EX∼fθ (y)[P(X )] = EX∼fθ (y)
[
P(X )∇θ log fθ (X )

]
, (15)

where f is a density with parameter θ . In our case, we perturb
the input vector x to P with Gaussian noise to obtain a
random variable X ∼N (x, 6) where diag(6)= σ 2, so θ ≡ x
(cf. Eq. (2)). Thus, we only need to derive the following
gradient of fx,σ , the normal density with mean x and variance
σ 2:

∇x ln fx,σ (y) = ∇x ln

(
1

σ
√
2π

e
−

1
2

(
y−x
σ

)2)

= ∇x ln
(

1

σ
√
2π

)
+ ∇x ln

(
e
−

1
2

(
y−x
σ

)2)

= ∇x ln e
−

1
2

(
y−x
σ

)2

= −∇x
1
2

(
y− x

σ

)2
= −∇x

(y− x)2

2σ 2

= −
2(y− x)
2σ 2

=
y− x
σ 2 . (16)

Using this, we can approximate Eq. (15) by Monte Carlo
sampling:

EX∼N (x,σ 2)
[
P(X )∇x log fx,σ (X )

]
=

1
S

S∑
s=1

P(xs)
xs − x

σ 2 ,

(17)

where xs, s∈ {1, . . . , S} are iid. variates of X . To make the
fact that X is an ‘‘artificial’’ random variable obtained by
perturbing the input vector x more explicit, it is convenient
to reparametrize and redefine X := x+σU for U ∼N (0, 1).
Applying this substitution to the previous equation yields:

∇xEX [P(X )] =
1
S

S∑
s=1

P(x + σus)
x + σus − x

σ 2

=
1
S

S∑
s=1

P(x + σus)
us
σ

, (18)

where us, s∈ {1, . . . , S} are iid. variates of U . This leads to
the REINFORCE estimator shown in Eq. (13).

APPENDIX B
IMPLICIT COVARIANCE THROUGH AUTOMATIC
DIFFERENTIATION
In this appendix, we show how AD wrt. the program inputs
can be used to implicitly account for the covariance when

applying the standard uncertainty propagation formula. This
technique is also applied by the uncertainties-cpp library.6

For clarity, we assume the common case of a binary function
on two intermediate variables a1 and a2 that depend on each
other via a single input variable x. The derivation can easily
be adapted to cases with multiple inputs and n-ary operations.
For the former, one needs to include the covariance between
the components of the input vector (which in our case is
always 0) in Eq. (22) below, for the latter, one needs to
consider h(a1, . . . , an).
Let the two intermediate variables a1 = f (x) and a2 = g(x)

be linear functions f and g of the input variable x. The
variances of a2 and a2 are computed from the input variance
σx according to [48] to first order as

σ 2
f(x) =

(
df (x)
dx

)2
σ 2
x (19)

and

σ 2
g(x) =

(
dg(x)
dx

)2
σ 2
x . (20)

Because of the linearity of f and g, this is exact. If we apply
a function h on a1 and a2 and want to calculate the resulting
uncertainty in the form of the variance, we need to account
for their covariance [48]:

σ 2
h(a1,a2) ≈

(
∂h(a1, a2)

∂a1

)2
σ 2
a1 +

(
∂h(a1, a2)

∂a2

)2
σ 2
a2

+ 2
(

∂h(a1, a2)
∂a1

)(
∂h(a1, a2)

∂a2

)
Cov(a1, a2)

(21)

However, instead of tracking the covariance of each variable
explicitly, the following equation can be used, which makes
use of the derivative wrt. the input variable x:

σ 2
h(a1,a2) ≈

(
dh(a1, a2)

dx

)2
σ 2
x (22)

Under the usual assumption of linearity in h, this expression is
equivalent to Eq. (21). One can see this in our binary case by
applying the chain rule, as used in AD, and expanding using
the binomial theorem:

σ 2
h(a1,a2) ≈

(
∂h(a1, a2)

∂a1

da1
dx

+
∂h(a1, a2)

∂a2

da2
dx

)2
σ 2
x

=

(
∂h(a1, a2)

∂a1

da1
dx

)2
σ 2
x

+

(
∂h(a1, a2)

∂a2

da2
dx

)2
σ 2
x

+ 2
(

∂h(a1, a2)
∂a1

da1
dx

)(
∂h(a1, a2)

∂a2

da2
dx

)
σ 2
x

6https://www.giacomopetrillo.com/software/uncertainties-
cpp/doc/html/classuncertainties_1_1_u_real.html
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LISTING 1. Program used to generate Fig. 3.

We observe that, given the definition of σ 2
f (x) in Eq. (19),

we can substitute (da1/dx)2σ 2
x with σ 2

a1 (analogously for a2):

=

(
∂h(a1, a2)

∂a1

)2
σ 2
a1 +

(
∂h(a1, a2)

∂a2

)2
σ 2
a2

+2
(

∂h(a1, a2)
∂a1

∂a1
∂x

)(
∂h(a1, a2)

∂a2

∂a2
∂x

)
σ 2
x .

The last term of the sum can be brought into the form of
Equation 21 by considering a first-order approximation of the
covariance7 Cov(a1, a2) as

Cov(f (x), g(x)) ≈
df (x)
dx

σx
dg(x)
dx

σx =
da1
dx

da2
dx

σ 2
x (23)

Substitution then leads to Eq. (21). Thus, assuming linear
dependencies, AD can be used to avoid the need to explicitly
track the covariance term.

APPENDIX C
SYNTHETIC EXAMPLE
See Listing 1.
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