
Special Issue Article

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

1–17

� The Author(s) 2023

DOI: 10.1177/00375497231158930

journals.sagepub.com/home/sim

Synchronous speculative simulation of
tightly coupled agents in continuous
time on CPUs and GPUs

Philipp Andelfinger and Adelinde M Uhrmacher

Abstract
Traditionally, parallel discrete-event simulations of agent-based models in continuous time are organized around logical
processes exchanging time-stamped events, which clashes with the properties of models in which tightly coupled agents
frequently and instantaneously access each other’s states. To illustrate the challenges of such models and to derive a
solution, we consider the domain-specific modeling language ML3, which allows modelers to succinctly express transi-
tions and interactions of linked agents based on a continuous-time Markov chain (CTMC) semantics. We propose syn-
chronous optimistic synchronization algorithms tailored toward simulations of fine-grained interactions among tightly
coupled agents in highly dynamic topologies and present implementations targeting multicore central processing units
(CPUs) as well as many-core graphics processing units (GPUs). By dynamically restricting the temporal progress per
round to ensure that at most one transition or state access per agent, the synchronization algorithms enable efficient
direct agent interaction and limit the required agent state history to only a single current and projected state. To main-
tain concurrency given actions that depend on dynamically updated macro-level properties, we introduce a simple
relaxation scheme with guaranteed error bounds. Using an extended variant of the classical susceptible-infected-
recovered network model, we benchmark and profile the performance of the different algorithms running on CPUs and
on a data center GPU.

Keywords
Parallel simulation, agent-based simulation, multiagent simulation, optimistic synchronization, GPU

1. Introduction

Agent-based simulation is an established method to study

systems of interacting entities in domains such as sociol-

ogy,1 traffic engineering,2 or systems biology.3 A simple

approach to the time advancement in agent-based simula-

tions is taken by synchronous time-driven simulations, in

which all agents’ state transitions occur concurrently at

discrete points in simulation time. This approach provides

ample opportunities for parallel execution: since the

agents’ transitions at a given time step are logically con-

current, the transitions can be assigned to different pro-

cessing elements to reduce execution times. However, in

many real-world systems, transitions may occur at arbi-

trary points in time.4 If agent-based models are thus speci-

fied with respect to continuous time, an execution using

the limited granularity given by a fixed time step size may

cause deviations from an execution according to the strict

model semantics. Furthermore, conflicts may occur among

the actions taken by agents within a time step.5 To resolve

conflicts, a time-driven simulation cannot rely on the pre-

cedence relation defined by the fine-grained transition

times available in a continuous-time simulation.

Furthermore, the time step size defines a lower bound on

the propagation delay of effects throughout the simula-

tion,6 whereas in a continuous-time formulation, no such

bound must be imposed.

On the contrary, while a continuous-time execution can

represent the model semantics to machine precision, when

considering parallelization to reduce execution times, a

synchronization algorithm is required to satisfy the result-

ing stricter ordering constraints. A variety of parallel

Institute for Visual and Analytic Computing, University of Rostock,

Germany

Corresponding author:

Philipp Andelfinger, Institute for Visual and Analytic Computing, University

of Rostock, Albert-Einstein-Straße 22, 18059 Rostock, Germany.

Email: philipp.andelfinger@uni-rostock.de

https://doi.org/10.1177/00375497231158930
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00375497231158930&domain=pdf&date_stamp=2023-03-21

discrete-event simulation (PDES) algorithms have been

developed to ensure the efficient and correct execution of

simulation models, typically oriented around logical pro-

cesses that exchange events specified in continuous simu-

lation time.7,8

A challenge to an efficient execution using PDES is

given by the tightly interlinked life courses of commu-

nities of agents encountered in many agent-based models.9

To cater to this ‘‘tight coupling,’’ multiagent modeling

and simulation environments such as Repast,10 NetLogo,11

or Mesa12 allow agents to directly carry out read and write

accesses to the attributes of other agents. These direct

write accesses to an agent’s state variables by other agents

appear to be at odds with the autonomy of agents, which

describes an agent’s ability to make decisions and effect

state changes based on its own perception of the environ-

ment.13 However, social systems tend to be rife with social

structures in which not all participants act with full auton-

omy.14 For instance, when a family migrates to another

country, children may not take an active part of the

decision-making process, but will be directly impacted by

the migration. Similarly, employees at a company may

have their employment terminated without their active

involvement. Although it is possible to model such pro-

cesses as actions taken as a consequence of autonomous

observations and deliberations based on the environment

state, as formally supported by the Influence-Reaction

model,15,16 direct accesses to the agents’ state reflect in

these cases mechanisms of real-world social systems and

allow for more succinct modeling, and are thus supported

by the majority of agent-based modeling simulation tools.

To illustrate the challenges of parallel simulation of

tightly coupled agent-based models, we consider the

domain-specific modeling language ML3,17,18 which

allows modelers to succinctly express transitions and inter-

actions of linked agents based on a continuous-time

Markov chain (CTMC) semantics. We highlight key prop-

erties of ML3 models to determine the requirements for an

efficient parallel execution and present a novel optimistic

synchronization algorithm. In optimistic PDES, some

computations are carried out speculatively without regard

for potential violations of ordering constraints. If a viola-

tion occurs, the affected simulation state is rolled back to

a previous correct state. To cope with the tight coupling

among separate agents’ states, the algorithm follows two

main ideas. First, agents may directly read and write other

agents’ states, without the exchange of events or messages

as used in traditional PDES approaches. Second, a syn-

chronous mode of time advancement restricts both the

temporal deviation among processors and avoids cascad-

ing rollbacks and the overhead required for their handling

entirely. In addition, we propose a variant of the algorithm

that avoids the locking of agent states and exposes fine-

grained parallelism, making this variant well-suited for the

execution on graphics processing units (GPUs). The lock-

free variant of our algorithm inherits most properties of

the base algorithm, but employs a light-weight messaging

mechanism to represent direct interagent accesses.

Implementations of the proposed algorithms for execution

on multicore central processing units (CPUs) and GPUs

are evaluated using a variant of a classical epidemic net-

work model,19 which we extend to stress the performance-

critical aspects of ML3 models.

We summarize our contributions as follows:

� We describe performance-critical aspects of ML3

models and their implications for parallelization.
� We propose and detail a synchronous optimistic

synchronization algorithm for models of tightly

coupled agents.
� We present the additions and modifications to the

base algorithm required to achieve lock-free

execution.
� Performance measurements under challenging

model configurations using scenarios populated by

up to 226 agents demonstrate speedups of up to 5.1

using 32 CPU cores and 10.9 on a data center GPU

compared with an efficient sequential baseline.

This article is an extended version of our previous confer-

ence publication.20 The new material over the conference

version includes the design of the lock-free variant of the

algorithm, the description of its implementation targeting

many-core GPUs, and new profiling results aiming to fur-

ther elucidate the causes for the observed performance of

the two algorithms depending on the model configuration.

The paper is structured as follows: In Section 2, we

describe key properties of the considered class of models,

their implications for parallel execution, and existing meth-

ods for parallel simulation of tightly coupled systems. In

Section 3, we propose optimistic synchronization algo-

rithms tailored to the identified requirements. In Section 4,

we describe our implementation of the two optimistic algo-

rithms and our sequential baseline. In Section 5, we evalu-

ate the performance of the algorithm and present profiling

results on the different hardware platforms. Section 6 sum-

marizes our results and concludes the paper.

2. Fundamentals and related work

ML3 is a modeling language offering constructs to suc-

cinctly model complex interactions among agents linked

within dynamically evolving topologies. In the present

paper, the language serves as a representative of a model

class in which agent states are updated in a tightly linked

manner using rate-driven transitions. In the following, we

introduce the key ideas of ML3 and their implications for

the parallelized execution of ML3 models. A comprehen-

sive discussion and a formal semantics of the language are

2 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

provided in Reinhardt et al.18 Furthermore, we discuss

existing work on the parallelization of the underlying

Stochastic Simulation Algorithm and on the consideration

of macro properties in parallel and distributed simulations.

Our proposed synchronization algorithms are closely

related to Steinman’s21 classical breathing time buckets

algorithm. Hence, we describe how our algorithms differ

from Steinman’s before discussing a number of synchroni-

zation approaches that deviate from the assumption of a

strict separation of the simulated entities’ state or the strict

reliance on events to represent interactions.

2.1. ML3

The design of ML3 is oriented around the requirements of

agent-based modeling in demography.17,18 The simulation

state is held by the attributes of individual agents, which

are comparable to classes and objects in object-oriented

programming languages. Connections and relationships

among agents are represented by links, which are bidirec-

tional relations with per-direction role names such as ‘‘par-

ent’’ and ‘‘child.’’ The topology reflected by the agents’

links can be dynamically updated throughout a model’s

execution. The model behavior is specified in terms of

agent-specific rules that define their possible state transi-

tions in terms of their conditions, timings, and effects.

Transitions in ML3 are specified using rules comprised

of three elements:

� A guard expression defines a predicate that must

hold for the rule to apply, i.e., for the transition to

occur.
� A waiting time expression defines the time or the

rate at which the transition occurs. Rates are

defined either as a rate constant or as a function of

current or other agents’ attributes, and may also be

time-dependent.
� An effect specifies the state changes to occur when

the transition is actuated, which may affect the cur-

rent or other agents’ attributes and links.

As an example, the following rule is an excerpt from the

susceptible-infected-recovered model commonly used in

epidemiology22 formulated in ML3.

Person

| ego.status = ‘‘susceptible’’ // guard

@ a * ego.network.filter(// waiting time

alter.status = ‘‘infected’’).size()

-.ego.status := ‘‘infected’’ // effect

The rule applies only to agents in the ‘‘susceptible’’

state. The transition occurs at a rate dependent on the con-

stant a and the current number of neighbors in the infected

state. This implies an exponentially distributed sojourn

time with a mean of 1=an, with n being the number of

infected neighbors. When the transition is actuated, the

agent enters the ‘‘infected’’ state.

Importantly, the variables affected by a transition’s

effect may instantaneously alter dependent transition rates

of the current or other agents.

2.1.1. CTMC and stochastic race. ML3 allows waiting times

to be defined either in the form of rates of an underlying

CTMC,23 in the form of rates of distributions dependent on

the global simulation time, or by specifying fixed transition

times directly. In the present article, we focus on transi-

tions following the CTMC semantics, i.e., the simulation is

a memoryless stochastic process with exponentially dis-

tributed inter-transition times. In this setting, the simula-

tion proceeds as a sequence of stochastic races: given

several imminent transitions with associated transition

rates, the transition to occur next is selected stochastically.

As a consequence of each transition, other transition’s rates

may be updated, after which the next stochastic race

commences.

This mode of simulation is inspired by stochastic simu-

lation algorithms, key variants of which were originally

proposed by Gillespie24 to simulate biochemical reaction

networks. Two specific algorithms in this category include

the Direct Method24 and the Next Reaction Method.25 The

Direct Method and its variants select the next transition

directly based on the current transition rates: similarly to

the generation of pseudo-random numbers adhering to an

empirical distribution, a uniform random variate deter-

mines the index of the next transition depending on their

relative rates. A second uniform random variate is trans-

formed according to the sum of all transition rates to gen-

erate the transition time. As each selection of a transition

and its time requires the transition rates to be current, the

Direct Method suggests a serialized mode of execution. In

contrast, the Next Reaction Method draws tentative

Algorithm 1: Pseudo code of simulating an ML3 model using
the Next Reaction Method.18

1 foreach agent in agents do
2 foreach rule in agent.rules do
3 if rule.guard_expression()then
4 rate rule.rate_expression()
5 schedule_transition(rule, random_exponential(rate))

6 While !termination_criterion do
7 transition select_earliest_scheduled_transition()
8 affected_rules transition.rule.effect()
9 foreach rule in affected_rules do
10 retract_transition(rule)
11 if rule.guard_expression() then
12 rate rule.rate_expression()
13 schedule_transition(rule, transition.time +
14 random_exponential(rate))

Andelfinger and Uhrmacher 3

timestamps for all possible transitions. The transition with

the earliest timestamp is carried out, which may affect the

rates of other transitions. Such dependent transitions are

then rescheduled according to the updated rates. Algorithm

1 shows pseudo code for the simulation of an ML3 model

according to the Next Reaction Method.

2.1.2. Parallelization challenges. The choice of simulation

algorithm has important implications for the parallel exe-

cution of ML3 models. The Next Reaction Method may

discard many tentatively scheduled transitions if the

degree of coupling among agents is high. However, the

scheduled events provide valuable information of the time

and agent assignment of future transitions assuming inde-

pendence of the transition rates. Since this information

permits a speculative parallel execution of transitions, we

rely on the Next Reaction Method throughout the paper,

which also does not require transition delays to be distrib-

uted exponentially. The execution of ML3 models using

the Next Reaction Method can be viewed as a special case

of discrete-event simulation, which may suggest the use of

well-established methods for parallelization. However, we

identify three properties of ML3 models and, more gener-

ally, tightly coupled agent-based models that pose chal-

lenges to traditional PDES approaches:

1. Direct read and write accesses across agent bound-

aries to support tightly coupled life courses of

agents,

2. State-dependent creation and removal of links and

agents to account for the dynamic structure of

systems,

3. Global access to the state of a population of agents

to calculate macro-level properties which may

influence the agent behavior at the micro level.26

We briefly illustrate the occurrence and implications of

each of these properties in turn, relying on an ML3 formu-

lation of a migration model.17 The model, which represents

decision-making processes involved in migrations from

Senegal to France, was originally developed in Netlogo.27

The model excerpts shown are slightly simplified for brevity.

2.1.2.1. State access across agent boundaries. As do other

agent-based modeling and simulation environments, ML3

permits read and write accesses to arbitrary agents as part

of the guard expressions, waiting time expressions, and

effects that make up a rule. The following excerpt is part of

the ‘‘effect’’ component of a rule in the migration model:

(ego.friends + ego.friends.collect(alter.friends)—

ego.familyMembers()—ego).filter(ego.canMarry(alter))

The expression filters an agent’s friends and its second-

degree friends according to the predicate function

canMarry(), which in turn accesses the agents’ attri-

butes. The accesses occur instantaneously during the tran-

sition. In a scenario in which an agent has exactly 10

direct friends, each evaluation of the expression requires

accesses to up to 100 friends and friends-of-friends.

Considering the execution of such a transition in a parallel

simulation, we note that the agent must be able to access

the other agents’ states at the simulation time of the transi-

tion. This can be achieved by maintaining a history of pre-

vious states, rolling back agents to previous states when

required by write accesses, e.g., using the classical Time

Warp algorithm for optimistic PDES.28 However, the

Time Warp algorithm assumes that the interactions among

simulation objects occur through the exchange of events in

a message-passing style, which would require a ‘‘read

request’’ and ‘‘read response’’ event to carry out a single

read access between two agents. Furthermore, the two

events involved in a read access would carry the same

timestamp as the current transition. The resulting tight

temporal coupling among the involved logical processes

runs counter to the asynchronous mode of execution

defined by the Time Warp algorithm.

2.1.2.2. State-dependent creation and removal of links. At

a transition, an agent may create and remove links based

on its own state, the state of other agents, or randomly. In

the following excerpt from the migration model, an agent

moving to a new address creates links to the current inha-

bitants of the address and the inhabitants of the neighbor-

ing addresses:

ego.friends+=?address.inhabitants +

?address.neighbors.collect(

alter.inhabitants) - [ego]

The resulting topology evolves dynamically over the

course of the simulation, which has two key consequences

for parallelization: first, if the simulation state is parti-

tioned into logical processes, frequent repartitioning is

required to minimize attribute accesses across process

boundaries. In the presence of randomized link creations,

the proportion of accesses across logical processes may be

large even with frequent repartitioning. Second, even if a

specific rule restricts its accesses to direct neighbors of an

agent a0, topology information cannot easily be exploited

to determine independent transitions, as a concurrent tran-

sition of an agent a1 may create or remove a link to a1,

which would invalidate the topology information.

2.1.2.3. Globally accessing the state of a population of
agents. State variables of entire populations of agents may

be accessed by an agent. As an example, in the migration

model, a migrant randomly selects a new address from a

global set of all addresses, filtering by country and current

inhabitation:

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

Address.all.filter(alter.location = ‘‘host country’’&&

!alter.hasInhabitants()).random()

Each of the addresses is represented as an agent. For

this expression to be evaluated correctly, all previous

updates to the set of addresses must be visible. More gen-

erally, by imposing ordering constraints among transitions

at separate agents, the presence of accessing globally

entire populations of agents can severely limit the concur-

rency among transitions. When strictly adhering to the

model semantics, the extreme case of this type of global

access at every transition implies a complete serialization

of the simulation.

Overall, while the rate-based transition times in ML3

models necessitate the use of an optimistic approach to

synchronization, the tight and difficult-to-predict coupling

among agents suggests a scheme that emphasizes the effi-

ciency of attribute accesses and limits the frequency and

cost of rollbacks.

2.2. Simulations of tightly coupled systems using
time warp

The parallel and distributed execution of the stochastic

simulation algorithm in its traditional domain of biochem-

ical systems has been explored by several authors. The

Next Subvolume Method, which is a spatial extension of

the Next Reaction Method based on a regular grid, has

been executed using variants of the Time Warp algo-

rithm.29–31 As in our work, constraining the optimistic

execution proved beneficial for performance.31 Similarly,

Goldberg et al. employ Time Warp to execute the Next

Reaction method. In contrast to our synchronization algo-

rithm, Time Warp requires interactions among simulation

objects to be mediated through events and allows logical

processes to progress asynchronously.

Several works have evaluated and optimized agent-

based simulations running in a Time Warp kernel.

Pawlaszczyk and Timm32 proposed method for avoiding

excessive optimism based on model-specific properties.

Based on the interaction protocol followed by the agents,

structural knowledge about the interaction is exploited to

reduce the frequency of rollbacks. Using model similar to

our experiments, Rao33 highlighted the challenges of

executing susceptible-infected-recovered models using

Time Warp. A key focus was the reduction in message

exchanges among logical processes to ameliorate the

increasing overhead with larger numbers of processor

cores. A direct comparison of our synchronization algo-

rithms’ performance to the use of a Time Warp kernel

when executing ML3 models is provided in Andelfinger

et al.34 The relative performance of the algorithms is

determined largely by the amount of locality in the agent

interactions: If interactions are confined to large numbers

of small regions, Time Warp vastly outperforms the

synchronous approach. On the contrary, if the scenario

contains sufficiently large numbers of agents, the synchro-

nous algorithm achieves speedup regardless of the amount

of locality.

2.3. Breathing time buckets

Breathing time buckets is a synchronous algorithm in

which the processing within each round is bounded by the

timestamp of the earliest newly created event. Any com-

putation beyond this point in simulation time, referred to

as the event horizon, is rolled back. Newly scheduled

events are only sent among logical processes at the end of

a round, leading to an execution scheme that alternates

between the processing and exchange of events. Our base

algorithm differs in its deviation from a traditional event-

oriented representation of state changes and in their defini-

tion of the event horizon: as detailed above, the considered

agent-based models combine individual state transitions at

an agent with read and/or write accesses as well as poten-

tial rescheduling operations at neighboring agents, all

occurring at the same point in simulation time. Since the

breathing time buckets algorithm delays event exchanges

to the end of a round, any such combined operation would

require multiple rounds to complete. Instead, our base

algorithm permits direct access to the neighboring agents’

states. Such interagent accesses may be invalidated

throughout the processing of a round, requiring rollbacks.

To minimize the required state history per agent and to

avoid costly interactions among threads to signal access

invalidations, the algorithm maintains the invariant that at

the end of a round, only at most one access per agent is

committed. As an agent may only schedule events target-

ing itself, the creation and subsequent execution of an

event within the same round would constitute two accesses

to the agent, which is not permitted in our algorithm.

Thus, our definition of event horizon is stricter than the

one used in the breathing time buckets algorithm. The

lock-free variant of our algorithm represents interagent

accesses explicitly in the form of temporary messages, but

maintains our deviating definition of the event horizon.

2.4. Alternative synchronization approaches

Several mechanisms for synchronization and state accesses

have been proposed that depart from the classical parallel

and distributed simulation paradigm wherein simulation

objects are assigned to logical processes and all interac-

tions among objects are represented in the form of event

exchanges. Ghosh and Fujimoto35 proposed the concept of

space-time memory, which introduces a versioning of

variables in Time Warp simulations to correctly handle

concurrent accesses in shared memory settings. Chen

et al.36 aggregate logical processes to groups within which

variables can be accessed directly. Marziale et al.37

Andelfinger and Uhrmacher 5

propose the dynamic combination of simulation objects

based on runtime information regarding the frequency of

mutual accesses. Pellegrini et al.38 described a scheme that

achieves a transparent versioning of global variables.

Substantial performance gains are achieved by avoiding

some of the event exchanges required in traditional imple-

mentations. Ianni et al.39 proposed an optimistic parallel

simulation system in which all threads obtain events from

a single shared list. Events are processed without a fixed

mapping between threads and logical processes or simula-

tion objects, while still avoiding conflicting state accesses.

Pellegrini and Quaglia40 presented a mechanism for trans-

parent access to the state of arbitrary simulation objects in

optimistic simulations. This is achieved by an operating

system-level redirection of memory accesses. To guaran-

tee correctness, the current event is suspended and a new

event is scheduled that handles the actual state access. As

in our synchronization algorithm, these approaches loosen

the mapping between threads and simulation objects

encountered in traditional PDES approaches. Our work

differs in avoiding the use of events to represent state

accesses across objects altogether, and our synchronous

approach, which reflects the tightly coupled nature of the

agent-based models.

In 2020, Chen et al.41 presented a mechanism for agent

interaction in optimistically synchronized distributed simu-

lations in which interactions are mediated by mailboxes

holding time-stamped messages. Since our work assumes a

shared memory execution environment, agent interactions

take place without mediation. By permitting at most one

access to each agent in a round, we avoid maintaining a

state history similar to a mailbox beyond a ‘‘current’’ and

‘‘projected’’ agent state. We leave an exploration of var-

iants of our synchronization algorithm with per-agent state

histories within each window to future work.

A variety of methods have been proposed to control the

degree of optimism in speculative synchronization algo-

rithms by limiting the relative progress of logical processes

to balance the exploitation of parallelism and the overhead

for rollbacks.42–45 In our synchronous approach, the prog-

ress within each window is limited by an upper bound in

simulation time calculated based on the effective size of a

previous window. During each round, the effective win-

dow size is gradually reduced. Since threads promptly ter-

minate the current round once the current window size

prevents any further progress, the sensitivity to the initial

window size is low (cf. Section 5), avoiding the need for

sophisticated mechanisms to determine a suitable initial

window size.

While outside the scope of our present work, some

agent-based models may benefit from efficient mechan-

isms to support global range queries, e.g., to select all

agents within a certain age group. Several efficient

algorithms for this purpose targeting distributed environ-

ments have been proposed and evaluated in the

literature.46,47

3. Synchronous speculative
synchronization algorithm

Based on the properties of ML3 models detailed in the

previous section, our central idea is to acknowledge that

the considered models represent tightly coupled systems in

which a typical transition directly and instantaneously

affects several agents scattered throughout the topology,

and in which the propagation of effects over time can be

swift and difficult to predict. As a consequence, we pro-

pose a synchronous algorithm that, instead of emphasizing

the maximization of parallelism, aims to avoid some of

the overheads for state accesses and rollbacks that may be

incurred by more aggressive speculative algorithms. Our

synchronization algorithm is based on the simple observa-

tion that starting from a global synchronization point, the

earliest access in simulation time at an agent can never be

invalidated by another access to the same agent.

3.1. Overview

The simulation takes a round-based approach, wherein we

ensure that at the end of each round, only the earliest

access at each agent is committed. Hence, the delta in

simulation time by which the simulation can advance

throughout a round depends on the interactions among the

agents. We illustrate the desired behavior of the round-

based execution on the example of simulation populated

by four agents (cf. Figure 1). The current simulation time t

is the timestamp of the earliest scheduled transition.

During the current round, we consider all transitions up to

t + t0 for execution, where t0 is a tunable initial window

size in simulation time. Figure 2 shows the operations

associated with the agents’ transitions. For simplicity, we

Figure 1. Example of the transitions (vertical lines) of four
agents ai scheduled after a global synchronization point at
simulation time t. Initially, the event horizon limiting the
speculative execution of transitions is set to t+ τ0.

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

assume that all attribute accesses take place in read and

write mode. While the operations of agents assigned to a

single thread occur in order of ascending timestamps, the

order of operations across threads is arbitrary. Importantly,

multiple transitions executed speculatively within the

round may access the same agent. Finally, Figure 3 shows

the desired outcome of the round: the final window size t

guarantees that we commit exactly those transitions whose

accesses occurred earliest in simulation time for all

accessed agents, along with any involved write accesses.

Furthermore, the scheduling of any events speculatively

scheduled by the newly committed transitions takes effect.

3.2. Mechanism

Having illustrated the intended outcome of a synchroniza-

tion round, we now describe the mechanisms by which this

outcome is achieved. Algorithm 2 shows the main loop of

our synchronization algorithm as pseudo code. We assume

that agents are assigned to threads by a static partitioning

scheme, e.g., randomly. Each round of simulation begins

with a global reduction to determine the minimum time-

stamp among all threads’ scheduled transitions. The initial

upper bound on the timestamp of transitions considered

for execution, the event horizon is initialized based on the

minimum timestamp and the tunable initial window size

t0. Our choice of t0 is discussed in Section 5. Each thread

populates a list window_transitions holding all local

transitions scheduled for execution before the initial event

horizon (line 4). Subsequently, each thread executes the

transitions in the list in order of ascending timestamp. The

timestamp order of execution is exploited in line 6 to

terminate the execution of transitions early if the event

horizon does not permit any further progress in the current

round.

As we will detail below, the agent accesses carried out

during transitions reduce the event horizon to guarantee

that only at most one access at each agent is committed.

While executing transitions, each thread populates a list of

agents accessed by the local agents, which may include

agents assigned to other threads. By storing the agents at

the thread the access originated from, the need for locking

the lists is avoided.

A global barrier ensures that the final event horizon of

the current round has been determined (line 9). Now, all

transactions with timestamps lower than the event horizon

(a) (b)

(c) (d)

Figure 2. Scheduled transitions and their effects. When executed in parallel, agents may carry out their transitions in any order.
Our synchronization algorithm guarantees that of the accesses to a1 caused by the transitions of a0, a1, and a2, only the earliest
access takes effect and is committed. (a) Agent a0, (b) Agent a1, (c) Agent a2, and (d) Agent a3.

Figure 3. Final scheduled transitions (wide lines) and
committed agent accesses (thin lines) at the end of the round.
Throughout the processing of transitions, the effective event
horizon t+ τ has been gradually reduced to guarantee that at
most one access per agent is committed. In the example, the
transitions at agents a0 and a3 and the associated write accesses
are committed, whereas the transitions of agents a1 and a2 are
deferred to future rounds.

Andelfinger and Uhrmacher 7

are committed, and new transitions scheduled in the pro-

cess are enqueued. Agents whose transitions occurred at or

after the event horizon are rolled back. Similarly, agent

accesses that occurred earlier than the event horizon are

committed, and all other accesses are rolled back. To iden-

tify accessed agents, each thread iterates through all the

threads’ lists of accessed agents. As the lists are not written

to, no locking is required. Once all threads have reached

the final barrier, the simulation has advanced to the event

horizon and may enter a new round.

In the pseudo code of Algorithm 2, the updates of the

event horizon within a round were implicit. Algorithm 3

shows this aspect in detail: on an agent access, a per-agent

mutex is obtained. If the new access arrives at the earliest

observed simulation time, the access is carried out, displa-

cing a prior access with larger timestamp, if any.

Otherwise, the new access fails and the event horizon is

updated to defer the new access to a future round, which

globally restricts the processing of transitions at all threads.

We point out the close relationship of our synchroniza-

tion algorithm to the conflict resolution mechanisms used

in time-driven agent-based simulations, in which all agents

concurrently advance their states from simulation time t to

t + t. A number of approaches have been proposed and

evaluated to resolve the potential conflicts that may

emerge when accessing limited resources, e.g., if multiple

agents move to the same location in the simulation

space.5,48,49 In a ‘‘push’’ approach, agents register their

desired state accesses at the simulation objects, potentially

displacing previously registered agents based on static or

dynamic priorities. At the end of a round, the highest-priority

registered agent gains access to the object. This process

repeats until all agents have gained access to an object or

given up, at which point simulation time is increased to

t + t. Both in this procedure and in our optimistic synchroni-

zation algorithm, agents concurrently attempt to access other

simulation objects, potentially displacing each other. In both

cases, a round concludes once at most one access per entity

can be committed, deferring displaced agent accesses to a

future round. The key difference between conflict resolution

in time-driven simulations and our synchronization algorithm

lies in the definition of the access priorities: in the considered

class of agent models, the timestamps in continuous time

associated with transitions define priorities prescribing an

access order. In contrast, given a model that assumes concur-

rent transitions of all agents at fixed time steps, priorities

within each time step must be defined separately based either

on model properties or according to some other criterion, e.g.,

based on pseudo-randomness.5

3.3. Fine-grained lock-free variant

The synchronization algorithm described above employs

locks to immediately carry out remote agent accesses trig-

gered by a transition. A new access immediately displaces

any access with a higher timestamp applied previously. In

the following, we describe a variant that avoids the need

for locking by carrying out accesses only after the final

event horizon of a given round has been determined. By

explicitly storing messages we refer to as access requests,

of which at most one can subsequently be actuated by a

given agent, this lock-free variant surrenders the direct

interagent accesses of the lock-based scheme. However,

the synchronous execution still rules out cascading

Algorithm 2: Main speculative parallel simulation loop.

1 while !termination_criterion do
2 ev_horizon get_global_min_timestamp() + τ0
3 foreach thread in parallel do
4 window_transitions ‘‘local events before

ev_horizon’’
5 foreach event in window_transitions do
6 if event.timestamp ø ev_horizon then
7 break
8 event.execute()
9 barrier()
10 foreach event in window_transitions do
11 if event.agent.earliest_access < ev_horizon then
12 commit transition, enqueue new events
13 else
14 roll agent back to previous state
15 foreach list in accessed_agents_lists do
16 foreach agent in list do
17 if agent.is_local() and
18 agent.earliest_change < ev_horizon then
19 commit transition, enqueue new events
20 else
21 roll agent back to previous state
22 barrier()

Algorithm 3: Wrapper for agent accesses.

1 procedure Agent:: try access (now):
2 lock(mutex)
3 if now < earliest_access then

//access is earliest in round so far

4 if earliest_access 6¼∞ then
5 self old_self roll back prev. access

// defer transition associated with
// previous access to future round

6 atomic_min(&ev_horizon, earliest_access)

7 perform_access()
8 earliest_access now
9 else

// access not earliest in round,
// defer associated transition

10 atomic_min(&ev_horizon, now)

11 unlock(mutex)

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

rollbacks and hence avoids the need for antimessages. The

lock-free variant differs from the original synchronization

algorithm in several regards described in the following.

3.3.1. Interagent accesses. We illustrate the handling of

accesses using the example shown in Figure 4. Within the

current round, agents 0, 1, and 2 execute transitions at

simulation times 3, 5, and 4. Each of the transitions

involves a write access to agent 3. As previously, the

accesses update the event horizon (cf. Algorithm 3).

However, no locking occurs (lines 2 and 11), the agent is

not accessed immediately (line 7), and thus, an immediate

rollback (line 5) is never required. Instead of carrying out

the access immediately (line 7), an access request is

appended atomically to agent 3’s access request list. Since

our synchronization algorithm only allows the earliest of

any accesses to an individual agent to be committed, only

the access at simulation time 3 by agent 0 can be actuated,

whereas the accesses triggered by the transitions at agents

1 and 2 are deferred to a later round. The final content of

agent 3’s access request list depends on the order at which

the access requests arrive, as accesses with larger time-

stamp than any previously recorded access request are dis-

carded immediately. In contrast to write accesses, pure

read accesses to an agent are carried out immediately as in

the locking-based scheme, without first being appended to

the access request list. Since the updating of the event hor-

izon rules out situations where multiple transitions read

from the same agent within a round, the result of a read

access prior to the final event horizon is always correct.

Figure 5 illustrates the resulting the possible final con-

tent of agent 3’s access request list for all possible arrival

orders of the access requests.

3.3.2. Presampling of transition times. An interagent access

may trigger the scheduling or rescheduling of a transition

at the accessed agent. The timestamp of such newly sched-

uled transitions must be considered in the calculation of

the event horizon. In the base algorithm described in

Section 3.2, accesses are carried out immediately,

allowing us to obtain the exact timestamp of any new tran-

sition immediately. In contrast, since the lock-free scheme

defers accesses to the end of a round, the timestamp of

newly scheduled transitions is not be known. This is

solved based on the observation that in the considered

model class, transition delays are drawn from exponential

distributions and thus depend only on the transition rate

and a pseudo-random number. Hence, to ensure that no

newly scheduled transition interferes with accesses to be

committed in the present round, we require the user to

supply an upper bound on the rate of a newly scheduled

transition. The upper bound can be computed dynamically

based on the agent state at the beginning of the current

round and the guarantee that at most one access may occur

before scheduling the new transition. Using this upper

bound on the transition rate, the earliest possible transition

time can be computed by presampling the random number

stream of the current agent. The earliest transition time for

a given agent is computed on the first arrival of an access

request within a round. In Section 5.1, we give an example

of computing such an upper bound for the simulation

model used in our experiments.

3.3.3. Deferred actuation of accesses. Once the final event

horizon has been computed, agents either commit their

executed transitions or roll back to their previous state as

shown in Algorithm 2. Agents with nonempty access

request lists now traverse their lists and actuate any

accesses with timestamps prior to the event horizon, sche-

duling any new transitions created in doing so.

By employing fine-grained unsorted lists to store access

requests, the lock-free algorithm is well-suited for the exe-

cution on GPUs. An implementation targeting GPUs will

be detailed and evaluated in Sections 4.2 and 5.

3.4. Global state access

We briefly describe our simple mechanism to support

globally accessing state variables of all agents to calculate

a macro property of the system, e.g., the number of agents

being in a specific state. Let us consider an extreme case in

which all agents’ transition rates depend on a macro prop-

erty that is updated during every transition. In addition to

requiring a rescheduling at all agents after every transition,

every transition depends on the transition prior to it, result-

ing in a complete serialization of the simulation. Thus, as

our intention is to execute transitions in parallel, a strict

adherence to these global updates is infeasible. Instead, we

approximate such global dependencies by notifying depen-

dent agents only once the variable has changed by a con-

figurable amount.

In the sequential case, this type of approximation is tri-

vially implemented by storing the value of the global vari-

able during the last notification and triggering new

Figure 4. Transitions within a synchronization round to
illustrate the lock-free scheme. Agents 0, 1, and 2 attempt to
execute transitions, each accessing agent 3. Only the access at
time 3 triggered by the transition at agent 0 is actuated in this
round.

Andelfinger and Uhrmacher 9

notifications once the change exceeds the threshold.

However, during speculative parallel execution, the

threads alter the global variable in an unpredictable order

and may roll back prior changes. To identify the exact

point in time at which the threshold is crossed, we main-

tain a variable abs_change holding the sum of the abso-

lute changes to the global variable, independently of their

sign. This variable provides an upper bound on the amount

of change of the global variable in either positive or nega-

tive direction. During a parallel simulation round as

described previously, abs_change is updated atomically

by all threads. We terminate the round at the point tthreshold
in simulation time when abs_change crosses the config-

ured change threshold, which is a potential point in time at

which the actual change threshold may have been crossed.

After committing and rolling back transitions, the value of

the global variable is consistent with the sequential simu-

lation at tthreshold. We can now check whether the config-

ured threshold has in fact been crossed by the transition

that terminated the round, and trigger notifications if

needed. Finally, abs_change is set to the actual change

and the next round of simulation commences. This simple

scheme guarantees notifications at exactly the same points

in simulation time as in the sequential simulation. In

Section 5, we explore the sequential and parallel simulation

performance in the presence of an approximately updated

global variable that represents a macro property that the

micro behavior of the agent-based model depends on.

4. Implementation

In the following, we describe implementations of three

simulation algorithms: a sequential reference as a baseline

for the subsequent experiments, our base algorithm target-

ing CPUs, and the lock-free algorithm targeting GPUs.

4.1. CPU implementation

Our starting point is a sequential C++ simulator imple-

mentation created from scratch. The simulator employs

Gillespie’s Next Reaction Method: an event is scheduled

for each rule whose conditions are satisfied, according to

the current transition rate. The simulation advances by

executing the transition associated with the earliest sched-

uled event, which may entail updates to zero or more con-

ditions or rates and subsequent (re-)scheduling of events.

We implemented two mechanisms to avoid executing

events that have been retracted to reschedule transitions:

(1) removal from the pending event list and (2) skipping

based on an agent attribute. The first mechanism requires

a data structure that permits efficient element removal.

We employed the set container from the C++ standard

template library to represent the pending event list, which

is implemented as a red-black-tree and allows for

logarithmic-time insertion and removal. In the second

mechanism, events are stored in an STL priority_
queue container, which internally relies on an implicit

heap and in our experiments achieved vastly faster ele-

ment insertion, but does not support efficient element

removal. Each agent possesses one attribute per rule that

holds the timestamp of the next transition. Whenever an

event is scheduled or retracted, the corresponding attribute

is updated. Thus, when considering an event for execution,

the simulator can now compare the timestamp of the earli-

est event with the timestamp stored at the corresponding

agent to decide whether the event has been retracted and

should thus be skipped. With this second approach, an

explicit removal of events is avoided, at the cost of retain-

ing many of the retracted events in the list. Our experi-

ments rely on the second mechanism, which during initial

tests consistently outperformed explicit event removal.

The agent states are stored in two arrays, one holding

the ‘‘current’’ states at simulation time t, i.e., the lower

bound of the current window, and one holding the pro-

jected states to be determined during the current round. At

the end of a round, the projected states are either rolled

back to time t, i.e., discarded, committed by being copied

to form the new ‘‘current’’ states at the lower bound of the

next window. As described in Section 3, during an agent

access, the target agent may be rolled back. By restricting

(a) (b)

(c) (d)

Figure 5. Possible contents of agent 3’s access request list at the end of the example round, depending on the requests’ arrival
order as identified by the access timestamps. (a) Order: (5, 4, 3), (b) Order: (4, 3, 5) or (4, 5, 3), (c) Order: (3, 4, 5) or (3, 5, 4), and
(d) Order: (5, 3, 4).

10 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

the state history to only the state at t, rolling back an agent

identified by agent_id involves only the trivial and

inexpensive assignment:

*this=previous_states[agent_id];

To achieve deterministic results, each agent draws

pseudo-random numbers from a separate random number

stream generated by the Xoroshiro128** generator,50

which passes the BigCrush test suite from the TestU01

library.51 Since rollbacks require copying the previous ran-

dom number generator state as part of the overall agent

state, both the memory consumption and execution time of

the simulation benefit from the generator’s comparatively

small state size of 128 bits.

For multithreading, we employ POSIX threads and the

associated facilities for barriers and mutual exclusion.

Threads are pinned to physical CPU cores to improve

cache usage and to avoid unnecessary nonuniform mem-

ory accesses when using fewer than the available number

of cores. For atomic access to the shared upper bound on

the current window (ev_horizon), we employ the

atomic operations library from the C++ standard tem-

plate library.

4.2. GPU implementation

We also implemented our synchronous algorithm for exe-

cution on GPUs. The hardware architecture of modern

GPUs is characterized by dedicating more transistors to the

processing of arithmetic and logical operations rather than

control flow and caching.52 Small groups of threads, fre-

quently referred to as warps, execute instructions in lock-

step. Support for divergent control flow within a warp is

achieved by discarding results computed by threads which

do not follow a given control flow branch. Typically, an

efficient GPU program schedules many more threads than

there are physical processing elements, allowing the GPU

hardware scheduler to dynamically switch among warps to

hide memory access latencies. In addition, memory

accesses of several adjacent threads to adjacent locations

in memory are coalesced, i.e., served using a single mem-

ory transaction. Due to these architectural choices, GPUs

excel at programs that approximate a single-instruction

multiple-data (SIMD) type of processing, which runs coun-

ter to the highly divergent control flow inherent to the

locking-based synchronization algorithm presented in

Section 3.2. However, the lock-free algorithm variant

described in Section 3.3 enables an efficient GPU-based

implementation. In the following, we describe the key con-

siderations when implementing the algorithm using

NVIDIA CUDA.

A key computational step in the considered class of

simulations is the selection of imminent transitions. As

described in Section 2.1, each type of transition carried out

by an agent is bound to a rule and occurs at a time deter-

mined according to a rate, which may depend on the simu-

lation state. Given an initial event horizon at the start of a

round, our SIMD approach to identifying imminent transi-

tions within the event horizon employs a one-to-one map-

ping between GPU threads and agents. To maximize the

opportunities for memory coalescing, the agents’ transition

timestamps are stored as arrays on a per-rule basis, allow-

ing adjacent threads to access adjacent timestamps while

iterating across the rules. In doing so, we collect the identi-

fiers of active agents, i.e., those with imminent transitions,

in a dense array, for which transitions are again executed

using a one-to-one mapping between GPU threads and

agents. Figure 6 illustrates this simple approach, which is

efficient if the proportion of active agents per round is

high. Otherwise, substantial overhead is incurred by redun-

dant checks for inactive agents. To avoid redundant

checks, we employ the concept of epochs, which are peri-

ods in simulation time spanning multiple rounds. We

maintain a boolean array referred to as a transition mask

that stores for each agent whether a transition may occur

within the current epoch. This idea is akin to Steinman’s53

event list management, in which the temporal ordering of

events occurring in the far future is postponed. The transi-

tion mask allows us to temporarily exclude agents from

consideration for which transitions can be ruled out. At

epoch boundaries, the transition mask is initialized by set-

ting an agent’s boolean value to true if there is a sched-

uled transition with a timestamp within the next epoch,

and to false otherwise. Over the course of the epoch,

agents whose mask is false are not checked for imminent

transitions. When an interagent access triggers the schedul-

ing of a new transition within the current epoch, the

accessed agent’s boolean value is set to true. We note

that due to rescheduling, the agent may ultimately still

remain inactive throughout the epoch. Nevertheless, as

will be evaluated in Section 5, the transition mask severely

reduces the overhead for identifying imminent transitions,

without altering the simulation results.

Each agent draws pseudo-random numbers using

CUDA’s default XORWOW54 generator, which uses 192

bits of mutable state. When a agent appends an access

Figure 6. Transition selection in the GPU implementation
assuming an event horizon of 3. Transition timestamps are
stored using one array per rule (left). The transition selection
step assigns each GPU thread the identifier of one agent with
any transition prior to simulation time 3 (right).

Andelfinger and Uhrmacher 11

request to another agent’s list, a unique offset is deter-

mined based on hardware-supported atomic instructions.

5. Experiments
5.1. Model

To evaluate the benefits and limitations of the proposed

synchronization algorithm, we constructed a simulation

model that emphasizes the hard-to-parallelize properties of

tightly coupled agent-based models as detailed in Section

2.1. The model is based on an agent-based formulation of

the classical susceptible-infected-recovered model as

described by Macal,55 to which we introduce rate-based

transition probabilities in continuous time: in place of the

per-step transition probabilities of the original time-driven

model, transition times are drawn from an exponential dis-

tribution according to rates dynamically updated based on

the neighboring agents’ states. An agent is infected by its

neighbors at a rate equal to its number of infected neigh-

bors. Recovery from an infection and the return to the sus-

ceptible state take place at a rate of 1.

Initially, each agent creates mutual links with eight

unique neighbors chosen uniformly at random. To exercise

the capability to dynamically track interagent dependen-

cies, the agents randomly move within the topology by

cutting the ties to their current neighbors and selecting a

new set of eight random neighbors. The movement rate

can be configured to depend on the overall number of

infected agents, which represents the challenging case of a

macro property changing when agents are newly infected

or recovered. Given the proportion p of infected agents, an

agent moves at a rate of 0:13 (1� p). If the macro prop-

erty is not taken into account, the movement rate is con-

stant at 0:1.

5.2. Setup

The experiments using our CPU implementations were

conducted on a system equipped with two 16-core Intel

Xeon E5-2683v4 CPUs and 256GiB of RAM, running

CentOS Linux 7.9.2009. Hyperthreading was disabled. All

speedup values are given in relation to sequential runs on

this system. The GPU implementation was evaluated on a

system equipped with an AMD EPYC 7413 and an

NVIDIA RTX A6000, running Debian 10 within a virtual

machine restricted to two CPU cores and 32 GiB of RAM.

We plot averages of three runs for each data point with

95% confidence intervals. All experiments from our previ-

ous conference publication20 were carried out once again

to account for changes in the window size adaptation and

to extend the simulation duration to 1 unit of simulation

time independently of the scenario size. Sequential simula-

tion runs showed that the events in the simulation are fine-

grained, with processing times per transition of 2 to 10ms

including all overheads. In the CPU-based parallel simula-

tions, agents are assigned to threads by an ascending iden-

tifier. Since links among agents are created and changed

uniformly at random, this is equivalent to a static random

partitioning.

5.3. Results
5.3.1. Verification. The correctness of the parallelized CPU

implementation was verified by direct comparison of agent

states and timestamps of scheduled transitions at the end

of the simulation, which were observed to be identical

between the sequential and parallel simulations. Since the

CPU and GPU implementations rely on different random

number generators, the GPU implementation is verified

statistically. Table 1 compares the overall number of tran-

sitions and the percentage of agents in the infected state at

termination for three model configurations. The table

shows the average differences between runs of the CPU

and GPU implementations across 100 runs per configura-

tion with 99% confidence intervals. We observe that at all

scenario sizes, the confidence interval includes 0, suggest-

ing that aside from the random number generation, the

implementations behave equivalently.

5.3.2. Simulator configuration. An essential parameter when

executing GPU-based programs is the thread blocks size,

which determines the grouping of GPU threads into blocks

that are assigned non-preemptively to the GPU hardware.

The optimal choice of thread block size depends non-

trivially on the overall number of threads to be executed,

the register usage of the code executed by each thread, the

degree of divergence across code paths taken by the indi-

vidual threads, as well as hardware properties.56 As a basis

for all further experiments, we thus determined optimal

thread block sizes experimentally. In doing so, we differ-

entiate between those GPU kernels that operate on all

agents, and those that only operate on active agents, i.e.,

agents with an imminent transition (cf. Section 4.2).

Figure 7 shows the number of committed events per sec-

ond wall-clock time with different thread block sizes for

the two types of kernels when executing simulations with

Table 1. Difference in overall number of transitions and final
ratio of infected agents among the entire agent population with
the CPU and GPU implementations. All 99% confidence intervals
across 100 runs include 0, supporting the equivalence of the
results.

#Agents Diff. #Transitions Diff. Inf. Ratio [10− 4]

218 − 73.1 ± 214.2 − 1.62 ± 4.12
220 235.6 ± 446.5 1.55 ± 1.87
222 79.5 ± 908.5 0.03 ± 1.07

12 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

220 agents. We observe that highest performance is

achieved when using a thread block size of 128 for the

kernels operating on all agents. The kernels operating only

on the previously identified active agents performed best

using the smallest possible thread block size of only 1. We

ascribe this somewhat surprising result to the relatively

complex code involved in an agent’s transition. Separate

threads will thus rarely follow identical code paths, elimi-

nating most of the benefit of grouping threads within

thread blocks. This is in contrast to the kernels operating

on all agents such as the identification of imminent transi-

tions, which follow largely the same code path for all

agents. In accordance with these results, we set the thread

block sizes to 128 and 1 in all subsequent experiments.

In our synchronization algorithm, the maximum prog-

ress per round depends on the initial window size t0. The

choice of t0 involves a model-specific tradeoff between

the opportunity for parallel processing on one hand, and

the overhead of executing events that are subsequently

rolled back on the other hand. To account for the simula-

tion conditions at runtime, we periodically set t0 to a mul-

tiple w of the average effective window size t observed at

the end of the rounds during the previous period. As the

window size can only decrease during a round, w should

be set to a value above 1 to avoid a gradual decay of t0
toward 0. We observed only little dependence of the simu-

lation performance on the adaptation period and thus con-

figured a fixed period of 100 rounds. Figure 8 shows the

event rate achieved by parallel execution of the modified

susceptible-infected-recovered model using 32 threads,

varying the window size factor w. The global counter of

infected agents was disabled. First, we observe that the

performance increases with higher agent count.

Simulations using values for w of 2.5 and 5.0 typically

achieve somewhat higher performance than those using

1.25. The difference diminishes with increasing agent

counts. The choice of w strongly affects the rollback ratio,

i.e., the number of rollbacks per committed transition. In a

CPU-based parallel simulation of 220 agents with

w= 1:25, the ratio is only 0.28. With w= 2:5 and

w= 5:0, the ratio increases to 1.57 and 4.27, i.e., the num-

ber of transitions that are rolled back exceeds the number

of committed transitions. On the contrary, larger values of

w still allow for more transitions to be committed in each

round, decreasing the number of rounds to complete the

simulation. When setting w to 1.25, 2.5, and 5.0, a total of

1,555,168 transitions were committed within 11,694,

9210, and 9190 rounds. In light of these results, we con-

clude that the event rate is reasonably robust to the win-

dow size factor, even though the number of rollbacks may

differ substantially.

5.3.3. Scaling. Figure 9 shows speedup results for the CPU

implementation when varying the number of threads, with

the global counter of infected agents disabled. At 220

agents, most parallel configurations start to outpace the

sequential execution, with the exception of the configura-

tions using two threads. With two threads, the overhead

involved in executing events speculatively is only barely

amortized at the largest agent count of 226 agents. In

Figure 7. Heatmap of the GPU simulation performance as
(106) committed transitions per second wall-clock time
depending on the configured thread block size for kernels
operating on all agents and only the active agents. Due to the
divergent per-thread computations in the kernels handling active
agents, best performance is observed using only one thread per
block.

(a)

(b)

Figure 8. Committed events per second wall-clock time
depending on the window size factor w, which determines the
amount of optimism. We note that on both platforms, the
simulation performance is quite robust to changes in w. (a) CPU
implementation, 32 threads and (b) GPU implementation.

Andelfinger and Uhrmacher 13

contrast, large amount of parallelism of the runs with 32

threads enables substantial performance gains at large

agent counts, with a maximum speedup of 4.4 at 226

agents. Between agent counts of 222 and 225, best perfor-

mance was achieved using 16 threads, which coincides

with the number of physical cores on a single CPU socket

of our test system. Figure 10 shows the resulting effi-

ciency, i.e., the speedup divided by the number of threads.

In accordance with expectations, an increase in the number

of threads decreases the efficiency, whereas an increase in

the number of agents leads to higher efficiency. Figure 11

compares the performance of the CPU and GPU imple-

mentations. Given the GPU memory capacity of 48 GiB,

the scenario size was limited to a maximum of 225 agents.

We observe that the GPU implementation outperforms the

CPU variant in all cases, even at the smallest considered

agent counts. At the largest scenario size of 225 agents, the

speedup was 8.4 over the sequential CPU-based execution,

and 2.1 over the CPU-based parallel variant. Overall, we

conclude that our synchronization algorithm substantially

accelerates simulations of large populations.

5.3.4. Macro property accesses. Figure 12 compares the

number of committed transitions per second wall-clock

time with the global counter disabled and enabled, i.e.,

with or without taking into account the macro property of

the number of infected agents an individual’s movement

rate. When enabled, all the agents’ movement rates are

newly calculated every time the number of infected agents

has increased or decreased by 1% of the overall agent

count. As expected, the induced recalculation of rates and

rescheduling of events decrease performance both in the

Figure 9. Speedup of the CPU implementation over sequential
execution depending on the number of agents and threads.
Performance increases are observed at 218 agents and beyond.
An increase in the number of cores is consistently only beneficial
at sufficiently large numbers of agents.

Figure 10. Efficiency of the CPU implementation. As expected,
each doubling of the thread count decreases the efficiency, even
though the speedup of sufficiently large scenarios increases with
larger numbers of 9 threads.

Figure 11. Speedup comparison between the CPU
implementation using 32 threads and the GPU implementation
over the sequential CPU-based reference. On the GPU, the
agent count was limited to 225 by the graphics memory capacity.

(a)

(b)

Figure 12. Committed transitions per second wall-clock time
with and without a global counter updated whenever the
number of infected agents has changed by 1% of the total agents.
While the notification overhead reduces the absolute processing
rates, the speedup over the sequential case is largely maintained.
(a) CPU implementation and (b) GPU implementation.

14 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

sequential, and parallel CPU-based and GPU-based execu-

tion. At 225 agents, the rate of the CPU implementation is

reduced from 214,000 to 151,000 committed transactions

per second in the sequential case, and from 837,000 to

715,000 in the parallel case using 32 threads. Although the

absolute performance is lower when considering the macro

property, the speedup increases from 3.9 to 4.7. At 226

agents, the speedup increases to the largest overall value

observed on the CPU of 5.1. The results on the GPU with

225 agents exhibit the same trends, with a reduction in the

committed rate from 1,790,000 to 1,650,000 transitions

per second and an increase in speedup from 8.4 to 10.9.

5.3.5. Profiling. We carried out profiling runs for simula-

tions of 225 agents, with the macro property disabled. The

results were generated using Google’s Gperftools (https://

gperftools.github.io/) for the CPU variants, and NVIDIA

NSight Systems (https://gperftools.github.io/gperftools/

cpuprofile.html) for the GPU variant. The parallel CPU

variant was executed using 16 threads.

Table 2 shows our profiling results. We observe that

between 31.5% and 43.1% of the execution time is spent

on the actual execution of transitions. Hence, although the

algorithms and their implementations differ to a large

degree, the relative overhead remains roughly the same.

In the sequential CPU variant, the execution time is domi-

nated by the collection of imminent transitions, with only little

overhead apart from this step. The main costs during execu-

tion of the transitions are incurred by the notification of neigh-

bors and the scheduling of new transitions (22.7% and 14.3%

of the overall execution time, respectively).

The parallel CPU variant reduces the cost for collecting

imminent transitions to only 34.2%. However, as summar-

ized as ‘‘other,’’ another 22.7% of the execution time are

spent on the additional steps required as part of the algo-

rithm presented in Section 3.2. The execution of transitions

itself is dominated by the agent access wrapper (27.5% of

the overall execution time), which acquires and releases

mutexes and updates the event horizon.

Finally, in the GPU implementation of the lock-free

algorithm, which performs best out of the three variants,

nearly half of the execution time is spent collecting immi-

nent transitions. The overhead of this step could be further

reduced by considering multiple agents in aggregate and

adjusting the group size dynamically, as shown in our pre-

vious work.57 The remaining 19.5% of execution time

summarized as ‘‘other’’ is expended on the initialization

of the simulation rounds (9.5%), the actuation of accesses

(7.6%), and on rollbacks (2.5%).

6. Conclusion

We presented synchronous speculative synchronization

algorithms targeting models of tightly coupled agents in

continuous time. The algorithms restrict the state history

required for rollbacks to only a single entry per agent and

avoid cascading rollbacks entirely. Our base algorithm

enables direct attribute accesses across agents without

mediation through events or messages. A second algorithm

relies on messages to avoid the need for locking and

exposes fine-grained parallelism for GPU-based execution.

On the example of an extended susceptible-infected-

recovered agent-based model that emphasizes the challen-

ging characteristics of the considered model class, we

showed that our synchronization algorithms can accelerate

simulations of 6:7 3 107 agents by a factor of up to 5.1

using 32 CPU cores, and simulations of 3:63 107 agents

by a factor of 10.9 using a data center GPU.

Our experiments focused on agent-based models in which

event times are determined based on dynamically updated

transition rates, and in which state updates at one agent entail

instantaneous accesses to other agents’ attributes. However,

the mechanisms for efficient direct access among simulation

objects are general. Thus, a promising direction for future

work lies in exploring the benefits of our synchronous specu-

lative algorithms when executing discrete-event models of

other systems of tightly coupled entities.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:

Financial support was provided by the Deutsche

Forschungsgemeinschaft (DFG) research grant (grant no.

25856074), UH-66/15-2 (MoSiLLDe).

ORCID iD

Philipp Andelfinger https://orcid.org/0000-0002-0211-7136

References

1. Gilbert N and Troitzsch KG. Simulation for the social scien-

tist. Maidenhead: McGraw Hill Education, 2005.

2. Bazzan AL and Klügl F. A review on agent-based technol-

ogy for traffic and transportation. Knowl Eng Rev 2014; 29:

375–403.

Table 2. Profiling results showing percentages of execution
time spent on the different simulation steps. In spite of the
substantial differences in the approaches and the resulting
performance, similar percentages of the execution time are
ultimately spent on the execution of transitions.

Seq. CPU Parallel CPU GPU

Collect Trans. 65.2% 34.2% 49.1%
Execute Trans. 33.6% 43.1% 31.4%
Other 1.2% 22.7% 19.5%

GPU: graphics processing unit; CPU: central processing unit.

Andelfinger and Uhrmacher 15

3. An G, Mi Q, Dutta-Moscato J, et al. Agent-based models in

translational systems biology. WIRES Syst Biol Med 2009; 1:

159–171.

4. Willekens F. Continuous-time microsimulation in longitudi-

nal analysis. In: Zaidi A, Harding A and Williamson P (eds)

New frontiers in microsimulation modelling. Farnham:

Ashgate Publishing, 2009, pp. 413–436.

5. Yang M, Andelfinger P, Cai W, et al. Evaluation of conflict

resolution methods for agent-based simulations on the GPU.

In: Proceedings of the 2018 ACM SIGSIM conference on

principles of advanced discrete simulation, Rome, 23–25

May 2018, pp. 129–132. New York: ACM.

6. Köster T, Giabbanelli PJ and Uhrmacher A. Performance

and soundness of simulation: a case study based on a cellular

automaton for in-body spread of HIV. In: Proceedings of the

2020 winter simulation conference (WSC), Orlando, FL, 14–

18 December 2020, pp. 2281–2292. New York: IEEE.

7. Fujimoto RM. Parallel and distributed simulation systems.

In: Proceedings of the 2001 winter simulation conference,

Arlington, VA, 9–12 December 2001, vol. 1, pp. 147–157.

New York: IEEE.

8. Jafer S, Liu Q and Wainer G. Synchronization methods in

parallel and distributed discrete-event simulation. Simul

Model Pract Th 2013; 30: 54–73.

9. Noble J, Silverman E, Bijak J, et al. Linked lives: the utility

of an agent-based approach to modeling partnership and

household formation in the context of social care. In:

Proceedings of the 2012 winter simulation conference

(WSC), Berlin, 9–1 December 2012, pp. 1–12. New York:

IEEE.

10. North MJ, Collier NT, Ozik J, et al. Complex adaptive sys-

tems modeling with Repast Simphony. Complex Adapt Syst

Model 2013; 1: 3.

11. Tisue S and Wilensky U. NetLogo: design and implementa-

tion of a multi-agent modeling environment. In: Proceedings

of the agent conference on social dynamics: interaction,

reflexivity and emergence (updated), Chicago, IL, 7–9

October 2004, pp. 16–21. Cham, Switzerland: Springer.

12. Masad D and Kazil JL. Mesa: an agent-based modeling

framework. In: Proceedings of the 14th Python in science

conference (SciPy’2015), Austin, TX, 6–12 July 2015, pp.

53–60. https://portal.issn.org/resource/issn/2575-9752

13. Railsback SF and Grimm V. Agent-based and individual-

based modeling: a practical introduction. Princeton, NJ:

Princeton University Press, 2019.

14. O’Sullivan D and Haklay M. Agent-based models and indi-

vidualism: is the world agent-based? Environ Plann A 2000;

32: 1409–1425.

15. Ferber J and Müller JP. Influences and reaction: a model of

situated multiagent systems. In: Proceedings of the 2nd inter-

national conference on multi-agent systems (ICMAS’96),

Kyoto, Japan, 10–13 December 1996, pp. 72–79. Palo Alto,

CA: AAAI.

16. Michel F. The IRM4S model: the influence/reaction princi-

ple for multiagent based simulation. In: Proceedings of the

6th international joint conference on autonomous agents and

multiagent systems, Honolulu, HI, 14–18 May 2007, pp. 1–3.

New York: ACM.

17. Warnke T, Reinhardt O, Klabunde A, et al. Modelling and

simulating decision processes of linked lives: an approach

based on concurrent processes and stochastic race. Popul

Stud 2017; 71: 69–83.

18. Reinhardt O, Warnke T and Uhrmacher AM. A language for

agent-based discrete-event modeling and simulation of

linked lives. ACM T Model Comput S 2022; 32: 1–26.

19. Keeling MJ and Eames KTD. Networks and epidemic mod-

els. J R Soc Interface 2005; 2: 295–307.

20. Andelfinger P and Uhrmacher A. Optimistic parallel simula-

tion of tightly coupled agents in continuous time. In:

Proceedings of the 2021 IEEE/ACM 25th international sym-

posium on distributed simulation and real time applications

(DS-RT), Valencia, 27–29 September 2021, pp. 1–9.

New York: IEEE.

21. Steinman J. SPEEDES: synchronous parallel environment

for emulation and discrete-event simulation. In: Proceedings

of the SCS western multi-conference on advances in parallel

and discrete simulation, San Diego, CA, 16–19 May 1993,

vol. 23, pp. 1111–1115. New York: ACM.

22. Allen LJ and Lahodny GE Jr. Extinction thresholds in deter-

ministic and stochastic epidemic models. J Biol Dynam

2012; 6: 590–611.

23. Ross SM, Kelly JJ, Sullivan RJ, et al. Stochastic processes,

vol. 2. New York: Wiley, 1996.

24. Gillespie DT. A general method for numerically simulating

the stochastic time evolution of coupled chemical reactions.

J Comput Phys 1976; 22: 403–434.

25. Gibson MA and Bruck J. Efficient exact stochastic simula-

tion of chemical systems with many species and many chan-

nels. J Phys Chem A 2000; 104: 1876–1889.

26. Squazzoni F. The micro-macro link in social simulation.

Sociologica 2008; 2: 1–26.

27. Klabunde A, Zinn S, Willekens F, et al. Multistate modelling

extended by behavioural rules: an application to migration.

Popul Stud 2017; 71: 51–67.

28. Jefferson D and Sowizral H. Fast concurrent simulation using

the time warp mechanism. Part I: local control. Technical

report, RAND Corporation, Santa Monica, CA, December

1982.

29. Jeschke M, Park A, Ewald R, et al. Parallel and distributed

spatial simulation of chemical reactions. In: Proceedings of

the 2008 22nd workshop on principles of advanced and dis-

tributed simulation, Roma, 3–6 June 2008, pp. 51–59. New

York: IEEE.

30. Dematté L and Mazza T. On parallel stochastic simulation

of diffusive systems. In: Proceedings of the international

conference on computational methods in systems biology

(CMSB’2008), Rostock, 12–15 October 2008, pp. 191–210.

Berlin; Heidelberg: Springer.

31. Wang B, Hou B, Xing F, et al. Abstract Next Subvolume

Method: a logical process-based approach for spatial sto-

chastic simulation of chemical reactions. Comput Biol Chem

2011; 35: 193–198.

32. Pawlaszczyk D and Timm IJ. A hybrid time management

approach to agent-based simulation. In: Proceedings of the

annual conference on artificial intelligence, Bremen, 14–17

June 2006, pp. 374–388. Berlin; Heidelberg: Springer.

16 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

33. Rao DM. Efficient parallel simulation of spatially-explicit

agent-based epidemiological models. J Parallel Distr Com

2016; 93: 102–119.

34. Andelfinger P, Piccione A, Pellegrini A, et al. Comparing

speculative synchronization algorithms for continuous-time

agent-based simulations. In: Proceedings of the 2022 IEEE/

ACM 26th international symposium on distributed simulation

and real time applications (DS-RT), Alès, 26–28 September

2022, pp. 57–66. New York: IEEE.

35. Ghosh K and Fujimoto RM. Parallel discrete event simula-

tion using space-time memory. Technical report, Georgia

Institute of Technology, Atlanta, GA, 1994.

36. Chen L-L, Lu Y-S, Yao Y-P, et al. A well-balanced Time

Warp system on multi-core environments. In: Proceedings

of the 2011 IEEE workshop on principles of advanced and

distributed simulation, Nice, 14–17 June 2011, pp. 1–9. New

York: IEEE.

37. Marziale N, Nobilia F, Pellegrini A, et al. Granular time

warp objects. In: Proceedings of the 2016 ACM SIGSIM con-

ference on principles of advanced discrete simulation, Banff,

AB, Canada, 15–18 May 2016, pp. 57–68. New York: ACM.

38. Pellegrini A, Vitali R, Peluso S, et al. Transparent and effi-

cient shared-state management for optimistic simulations on

multi-core machines. In: Proceedings of the 2012 IEEE 20th

international symposium on modeling, analysis and simula-

tion of computer and telecommunication systems,

Washington, DC, 7–9 August 2012, pp. 134–141. New

York: IEEE.

39. Ianni M, Marotta R, Cingolani D, et al. The ultimate share-

everything PDES system. In: Proceedings of the 2018 ACM

SIGSIM conference on principles of advanced discrete simu-

lation, Rome, 23–25 May 2018, pp. 73–84. New York:

ACM.

40. Pellegrini A and Quaglia F. Cross-state events: a new

approach to parallel discrete event simulation and its specu-

lative runtime support. J Parallel Distr Com 2019; 132: 48–

68.

41. Chen S, Hanai M, Hua Z, et al. Efficient direct agent interac-

tion in optimistic distributed multi-agent-system simulations.

In: Proceedings of the 2020 ACM SIGSIM conference on

principles of advanced discrete simulation, Miami, FL, 15–

17 June 2020, pp. 123–128. New York: ACM.

42. Dickens PM, Nicol DM, Reynolds PF Jr, et al. Analysis of

bounded time warp and comparison with YAWNS. ACM T

Model Comput S 1996; 6: 297–320.

43. Ferscha A. Probabilistic adaptive direct optimism control in

time warp. In: Proceedings of the 9th workshop on parallel

and distributed simulation, Lake Placid, NY, 14–16 June

1995, pp. 120–129. New York: IEEE.

44. Rajaei H, Ayani R and Thorelli LE. The local Time Warp

approach to parallel simulation. In: Proceedings of the 7th

workshop on parallel and distributed simulation, San Diego,

CA, 16–19 May 1993, pp. 119–126. New York: ACM.

45. Wang J and Tropper C. Optimizing time warp simulation

with reinforcement learning techniques. In: Proceedings of

the 2007 winter simulation conference, Washington, DC, 9–

12 December 2007, pp. 577–584. New York: IEEE.

46. Ewald R, Chen D, Theodoropoulos GK, et al. Performance

analysis of shared data access algorithms for distributed

simulation of multi-agent systems. In: Proceedings of the

20th workshop on principles of advanced and distributed

simulation (PADS’06), Singapore, 24–26 May 2006, pp.

29–36. New York: IEEE.

47. Chen D, Ewald R, Theodoropoulos GK, et al. Data access in

distributed simulations of multi-agent systems. J Syst

Software 2008; 81: 2345–2360.

48. Tan WJ, Andelfinger P, Cai W, et al. Multi-thread state

update schemes for microscopic traffic simulation. In:

Proceedings of the 2020 winter simulation conference

(WSC), Orlando, FL, 14–18 December 2020, pp. 182–193.

New York: IEEE.

49. Tan WJ, Andelfinger P, Eckhoff D, et al. Causality and con-

sistency of state update schemes in synchronous agent-based

simulations. In: Proceedings of the 2021 ACM SIGSIM con-

ference on principles of advanced discrete simulation,

Suffolk, VA, 31 May–2 June 2021, pp. 57–68. New York:

ACM.

50. Blackman D and Vigna S. Scrambled linear pseudorandom

number generators, 2018, https://arxiv.org/abs/1805.01407

51. L’Ecuyer P and Simard R. TestU01: A C library for empiri-

cal testing of random number generators. ACM T Math

Software 2007; 33: 22.

52. NVIDIA Corporation. NVIDIA CUDA C programming

guide (version 11.6.0), 2022, https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html

53. Steinman JS. Discrete-event simulation and the event hori-

zon. ACM SIGSIM Simulat Digest 1994; 24: 39–49.

54. Marsaglia G. Xorshift RNGs. J Stat Softw 2003; 8: 1–6.

55. Macal CM. To agent-based simulation from system

dynamics. In: Proceedings of the 2010 winter simulation

conference, Baltimore, MD, 5–8 December 2010, pp. 371–

382. New York: IEEE.

56. Torres Y, Gonzalez-Escribano A and Llanos DR. UBench:

exposing the impact of CUDA block geometry in terms of

performance. J Supercomput 2013; 65: 1150–1163.

57. Andelfinger P and Hartenstein H. Exploiting the parallelism

of large-scale application-layer networks by adaptive GPU-

based simulation. In: Proceedings of the winter simulation

conference 2014, Savannah, GA, 7–10 December 2014, pp.

3471–3482. New York: IEEE.

Author biographies

Philipp Andelfinger is a postdoctoral researcher at the

Institute for Visual and Analytic Computing of the

University of Rostock. He received his PhD in Computer

Science from the Karlsruhe Institute of Technology in

2016.

Adelinde M Uhrmacher is professor at the Institute for
Visual and Analytic Computing of the University of

Rostock and head of the Modeling and Simulation Group.

She holds a PhD in Computer Science from the University

of Koblenz and a Habilitation in Computer Science from

the University of Ulm.

Andelfinger and Uhrmacher 17

